首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the 1(2)A' '(X2A' '), 1(2)A' (A2A'), 2(2)A' ' (B2A' '), and 2(2)A' (C2A') states of the C2H3Cl+ ion using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods. For the four ionic states, we calculated the equilibrium geometries, adiabatic (T0) and vertical (Tv) excitation energies, and relative energies (Tv') at the geometry of the molecule at the CASPT2 level and the Cl-loss dissociation potential energy curves (PECs) at the CASPT2//CASSCF level. The computed oscillator strength f value for the X2A' ' <-- A2A' transition is very small, which is in line with the experimental fact that the A state has a long lifetime. The CASPT2 geometry and T0 value for the A2A' state are in good agreement with experiment. The CASPT2 Tv' values for the A2A', B2A' ', and C2A' states are in good agreement with experiment. The Cl-loss PEC calculations predict that the X2A' ', A2A', and C2A' states correlate to C2H3+ (XA1) and the BA' ' state to C2H3+ (1A' ') (the B2A' ' and C2A' PECs cross at R(C-Cl) approximately 2.24 A). Our calculations indicate that at 357 nm the X2A' ' state can undergo a transition to B2A' ' followed by a predissociation of B2A' ' by the repulsive C2A' state (via the B/C crossing), leading to C2H3+ (X1A1), and therefore confirm the experimentally proposed pathway for the photodissociation of X2A' ' at 357 nm. Our CASPT2 D0 calculations support the experimental fact that the X state does not undergo dissociation in the visible spectral region and imply that a direct dissociation of the A state to C2H3+ (X1A1) is energetically feasible.  相似文献   

2.
The 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) electronic states of the SO(2) (+) ion have been studied using multiconfiguration second-order perturbation theory (CASPT2) and two contracted atomic natural orbital basis sets, S[6s4p3d1f]/O[5s3p2d1f] (ANO-L) and S[4s3p2d]/O[3s2p1d] (ANO-S), and the three states were considered to correspond to the observed X, B, and A states, respectively, in the previous experimental and theoretical studies. Based on the CASPT2/ANO-L adiabatic excitation energy calculations, the X, A, and B states of SO(2) (+) are assigned to 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2), respectively, and our assignments of the A and B states are contrary to the previous assignments (A to (2)A(2) and B to (2)B(2)). The CASPT2/ANO-L energetic calculations also indicate that the 1 (2)A(1), 1 (2)B(2), and 1 (2)A(2) states are, respectively, the ground, first excited, and second excited states at the ground-state (1 (2)A(1)) geometry of the ion and at the geometry of the ground-state SO(2) molecule. Based on the CASPT2/ANO-L results for the geometries, we realize that the experimental geometries (determined by assuming the bond lengths to be the same as the neutral ground state of SO(2)) were not accurate. The CASPT2/ANO-S calculations for the potential energy curves as functions of the OSO angle confirm that the 1 (2)B(2) and 1 (2)A(2) states are the results of the Renner-Teller effect in the degenerate (2)Pi(g) state at the linear geometry, and it is clearly shown that the 1 (2)B(2) curve, as the lower component of the Renner splitting, lies below the 1 (2)A(2) curve. The UB3LYP/cc-pVTZ adiabatic excitation energy calculations support the assignments (A to (2)B(2) and B to (2)A(2)) based on the CASPT2/ANO-L calculations.  相似文献   

3.
MRCI results are reported for the vertical excitation energies (VEE) and oscillator strengths f of doublet states of OClO up to 11 eV, including 3b(1) → 4s, 4p, 3d, 5s, 5p, 4d, and most 1a(2), 8a(1), 5b(2) → 4s and 4p Rydberg states. The lowest Rydberg states 3b(1) → 4s and 3b(1) → 4p(x) have mixed valence-Rydberg character. The observed spectral bands were reassigned to include valence states which have generally higher oscillator strengths. The well-known valence state 1(2)A(2) has a VEE of 3.63 eV, and a relatively high f of 0.042. Overall, the calculated oscillator strengths are in good agreement with measured values. The lowest quartet state, 1(4)B(2), lies at 6.95 eV. Quartet Rydberg states start with 1a(2) → 4s at 9.28 eV. According to calculated vertical ionization potentials (VIP) of OClO, the second VIP at 12.59 eV is reassigned from 1(3)B(1) to 1(3)B(2) (ionization from 1a(2), rather than 8a(1)), and the third VIP at 12.63 eV from 1(1)B(1) to 1(3)B(1) (ionization from 8a(1)). Vertical electron detachment energies of OClO(-) have been calculated up to 8.9 eV. There is good agreement with experimental values.  相似文献   

4.
In the present work, we mainly study dissociation of the C 2B1, D2A1, and E2B2 states of the SO2+ ion using the complete active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods. We first performed CASPT2 potential energy curve (PEC) calculations for S‐ and O‐loss dissociation from the X, A, B, C, D, and E primarily ionization states and many quartet states. For studying S‐loss predissociation of the C, D, and E states by the quartet states to the first, second, and third S‐loss dissociation limits, the CASSCF minimum energy crossing point (MECP) calculations for the doublet/quartet state pairs were performed, and then the CASPT2 energies and CASSCF spin‐orbit couplings were calculated at the MECPs. Our calculations predict eight S‐loss predissociation processes (via MECPs and transition states) for the C, D, and E states and the energetics for these processes are reported. This study indicates that the C and D states can adiabatically dissociate to the first O‐loss dissociation limit. Our calculations (PEC and MECP) predict a predissociation process for the E state to the first O‐loss limit. Our calculations also predict that the E2B2 state could dissociate to the first S‐ and O‐loss limits via the A2B2E2B2 transition. On the basis of the 13 predicted processes, we discussed the S‐ and O‐loss dissociation mechanisms of the C, D, and E states proposed in the previous experimental studies. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
To examine the experimentally suggested scheme of the pathways for Cl- and H-loss dissociations of the CH(3)Cl(+) ion in the X(2)E (1(2)A', 1(2)A' '), A(2)A(1) (2(2)A'), and B(2)E (3(2)A', 2(2)A") states, the complete active space-self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an atomic natural orbital (ANO) basis were performed for the 1(2)A' (X(2)A'), 1(2)A", 2(2)A', and 2(2)A'" states. The potential energy curves describing dissociation from the four C(s) states were obtained on the basis of the CASSCF partial geometry optimization calculations at fixed C-Cl or C-H distance values, followed by the CASPT2 energy calculations. The electronic states of the CH3(+) and CH(2)Cl(+) ions produced by Cl-loss and H-loss dissociation, respectively, were carefully determined. Our calculations confirm the following experimental facts: Cl-loss dissociation occurs from the 1(2)A' (X(2)A'), 1(2)A", and 2(2)A' states (all leading to CH3(+) (X(1)A(1)') + Cl), and H-loss dissociation does not occur from 2(2)A'. The calculations indicate that H-loss dissociation occurs from the 1(2)A' and 1(2)A' ' states (leading to CH(2)Cl(+) (X(1)A(1)) + H and CH(2)Cl(+) (1(3)A") + H, respectively). The calculations also indicate that H-loss dissociation occurs (with a barrier) from the 2(2)A" state (leading to CH(2)Cl(+) (1(1)A") + H), supporting the observation of direct dissociation from the B state to CH(2)Cl(+) and that Cl-loss dissociation occurs from the 2(2)A" state (leading to CH3(+) (1(3)A") + Cl), not supporting the previously proposed Cl-loss dissociation of the B state via internal conversion of B to A. The predicted appearance potential values for CH3(+) (X(1)A(1)') and CH(2)Cl(+) (X(1)A(1)) are in good agreement with the experimental values.  相似文献   

6.
The relative stabilities of all low-lying conformations of FeO(4)(0/-) stoichiometry were investigated at the quantum mechanical BPW91, CASPT2, and RCCSD(T) levels of theory. For both the anionic and neutral clusters, the determination of the most stable structure appears to be a demanding task. The density functional theory and wave function second-order perturbation theory computational techniques place the doublet state of the tetrahedron-like O(4)Fe(-) conformation substantially lower, up to 0.81 eV, than the doublet state of η(2)-(O(2))FeO(2)(-). The coupled-cluster method reduces the energy difference to less than 0.01 eV. This equal stability of the ground states of O(4)Fe(-) and η(2)-(O(2))FeO(2)(-) leads to the assignment of the experimental photoelectron spectrum of FeO(4)(-). The lowest binding energy band (X band) is ascribed to the (2)A(1) → (1)A(1) ionization of η(2)-(O(2))FeO(2)(-), while the higher energy band (A band) mainly corresponds to the (2)E → (1)A(1) transition between the O(4)Fe(0/-) conformations. For a specific conformation, CASPT2 calculates the best electron detachment energies. The highest energy peak in this band with the weakest intensity could be ascribed to the (2)A(2) → (3)A(2) transition between the η(2)-(O(2))FeO(2) conformations. The two progressions are the result of ionizations from the anti-bonding orbitals of predominant iron 3d. For a specific conformation, CASPT2 calculates the best electron detachment energies. A BPW91 Franck-Condon simulation of the observed vibrational progressions further confirms the proposed assignments.  相似文献   

7.
In this paper, the vertical excitation energies of total of 32 states of N(2)O(4) including the lowest two singlet states and two triplet states of each of the A(g), B(3u), B(2u), B(1g), B(1u), B(2g), B(3g), and A(u) symmetries were calculated at multiconfigurational self-consistent field (MCSCF) and the multireference internally contracted configuration interaction (MRCI) levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set. The potential energy curves of the eight singlet states(1 (1)A(g), 1 (1)B(3u), 1 (1)B(2u), 1 (1)B(1g), 1 (1)B(1u), 1 (1)B(2g), 1 (1)B(3g), and 1 (1)A(u)) and eight triplet states (1 (3)A(g), 1 (3)B(3u), 1 (3)B(2u), 1 (3)B(1g), 1 (3)B(1u), 1 (3)B(2g), 1 (3)B(3g), and 1 (3)A(u)) were calculated at MCSCF and MRCI levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set along the N-N distance. The vertical excitation energies of 1 (1)B(3u), 1 (1)B(2u), and 1 (1)B(1u) states with nonzero transition moment are 4.60 eV (269.6 nm), 6.06 eV (204.6 nm), and 7.71 eV (160.8 nm), respectively, at MRCI level of theory. The photodissociation asymptotics were assigned as NO(2)(X (2)A(1))+NO(2)(X (2)A(1)) for ground state 1 (1)A(g) and the 1 (3)B(1u) state, NO(2)(X (2)A(1))+NO(2)(1 (2)A(2)) for the 1 (1)B(1g), 1 (3)B(1g), 1 (1)A(u), and 1 (3)A(u) states, NO(2)(X (2)A(1))+NO(2)(1 (2)B(1)) for the 1 (1)B(3u), 1 (3)B(3u), 1 (1)B(2g), and 1 (3)B(2g) states, and NO(2)(X (2)A(1))+NO(2)(1 (2)B(2)) for the 1 (1)B(2u), 1 (3)B(2u), 1 (1)B(3g), and 1 (3)B(3g) states.  相似文献   

8.
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.  相似文献   

9.
The intrinsically multireference dissociation of the C-N bond in ground-state diazomethane (CH(2)N(2)) at different angles has been studied with the multireference Brillouin-Wigner coupled-cluster singles and doubles (MRBWCCSD) method. The morphology of the calculated potential energy surface (PES) in C(s)() symmetry is similar to a multireference perturbational (CASPT3) PES. The MRBWCCSD/cc-pVTZ H(2)C-N(2) dissociation energy with respect to the asymptotic CH(2)(?(1)A(1)) + N(2)(X(1)Sigma(g)(+)) products is D(e) = 35.9 kcal/mol, or a zero-point corrected D(0) = 21.4 kcal/mol with respect to the ground-state CH(2)(X(3)B(1)) + N(2)(X(1)Sigma(g)(+)) fragments.  相似文献   

10.
Time-dependent wave packet calculations of the (A (2)A(2)<--X (2)B(1)) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X (2)B(1) ground state ab initio potential energy surface reported by Peterson is used together with his corresponding A (2)A(2) state surface or the revised surface of the A (2)A(2) state by Xie and Guo. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A (2)A(2) potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A (2)A(2) state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A (2)A(2) state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.  相似文献   

11.
In this work, the ethylene coordination and dimerization mechanism over Cr(II)OH(+) cation were systematically investigated using density functional theory (DFT) and complete active space second-order perturbation theory (CASPT2). It was found that Cr(II)OH(+) cation can coordinate with up to four ethylene molecules which gives seven possible stable Cr(II)OH(+)·(C(2)H(4))(n) (n = 1-4) π-complexes. We investigated whether ethylene dimerization over Cr(II)OH(+) cation proceeds through either a carbene mechanism or a metallacycle mechanism. The potential energy surfaces were characterized using four different functionals (M06L, BLYP, B3LYP, and M06). It was found that the potential energy profiles calculated at the M06 level agreed well with the CASPT2 energy profiles. Since the intermediates involved in the proposed catalytic cycles showed different ground spin states, a reaction pathway involving a spin crossing between two potential energy surfaces was observed. The minimum-energy crossing points (MECPs) that connect the two potential energy surfaces were successfully located. The two-state metallacycle reaction pathway with the formation of chromacyclopentane as the rate-determining step was found to be energetically more favorable than the carbene reaction pathway. 1-Butene was formed from the chromacyclopentane by a two-step reductive elimination pathway through a chromium(IV) hydride intermediate.  相似文献   

12.
State-selective mass spectrometry has revealed one conclusive and another probable metastable state of the N2O2+ dication, assigned respectively as 1 3Pi at 38.5 eV and 2 3Pi at 42.5 eV. Photon coincidence experiments confirm that dissociation of 1 3Pi is preceded by a fluorescent transition to X 3Sigma- and also indicate that an identical mechanism occurs for 2 3Pi. Highly correlated MRCI calculations are performed at a range of N2O2+ geometries, from which both N-N and N-O bond stretching curves are generated. Substantial barriers along both coordinates are observed for 1 3Pi and 2 3Pi, although the increasing density of states at higher energy may allow spin-orbit or vibronic predissociation for 2 3Pi. Fragment emissions derived from N2O+ and N2O2+ are analyzed with the aid of glass filters, from which NO (X 2Pi<--A 2Sigma+) and vibrationally excited N2+ (X 2Sigmag+<--B 2Sigmau+) transitions are deduced.  相似文献   

13.
陈晓霞 《结构化学》2012,31(2):161-166
The mechanism of VO2+ + H2 reaction in the gas phase was investigated by using density functional theory (DFT) at the CCSD//B3LYP/6-311G(2d, p) level. According to our calculation results, the different reaction mechanisms were found for the singlet and triplet potential energy surfaces (PESs). Especially, the crossing points (CPs) among different PESs were located by means of the intrinsic reaction coordinate (IRC) approach presented by Yoshizawa et al., and the structures and energies of the corresponding minimum energy crossing points (MECPs) were obtained by the mathematical algorithm proposed by Harvey et al. Finally, the frontier molecular orbital (FMO) interaction analyses about MECP1 and MECP2 were used to prove our calculation results.  相似文献   

14.
We studied the ion-pair formation dynamics of F2 at 18.385 eV (67.439 nm) using the velocity map imaging method. It was found that there are two dissociation channels corresponding to production of F(+)((1)D(2)) + F(-)((1)S(0)) and F(+)((3)P(j)) + F(-)((1)S(0)). The measured center-of-mass translational energy distribution shows that about 98% of the dissociation occurs via the F(+)((1)D(2)) channel. The measured angular distributions of the photofragments indicate that dissociation for the F(+)((3)P(j)) channel occurs via predissociation of Rydberg states converging to F(2)(+)(A(2)Pi(u)) and dissociation for the F(+)((1)D(2)) channel involves mainly a direct perpendicular transition into the ion-pair state, or X(1)Sigma(g)(+) --> 2(1)Pi(u), which is also supported by the transition dipole moment calculations .  相似文献   

15.
The photochemistry of N-nitrosodimethylamine after excitation to the S(1) and S(2) states has been studied with the complete active space self-consistent field method (CASSCF) and the second-order multiconfigurational perturbation theory (CASPT2). The calculated vertical transitions agree with the experiment: the S(0) --> S(1) transition occurs at 3.29 eV (f = 0.003 au), the S(0) --> S(2) transition at 5.30 eV (f = 0.17 au) and the first excited triplet state is computed at 2.48 eV. Solvent effects have been reproduced by means of PCM calculations. It is shown that excitation to S(1) and S(2) yields the same photoproducts: (CH(3))(2)N (1(2)B(1)) and NO (X(2)Pi). However, while on S1 the process is adiabatic, the process on S(2) implies an ultrafast decay through a planar S(2)/S(1) conical intersection. Our calculations are consistent with the reversibility of the N-N dissociation after irradiation at 363.5 nm and the observed dimethylamine radical reactions when irradiated at 248 nm, namely, H extrusion, a one-step process (41.3 kcal/mol), and methyl radical extrusion, a two-step process (44.0 kcal/mol and 31.5 kcal/mol). Finally, two more aspects are considered: (i) the topology of the T(1) surface where two minima have been found to correlate with the phosphorescence emission band and (ii) the influence of tautomerizations which is shown to be neglectable.  相似文献   

16.
The photodissociation of gas-phase I(2)Br(-) was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm (4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two-body dissociation showed evidence for four distinct channels: Br(-) + I(2), I(-) + IBr, Br+I(2) (-), and I + IBr(-). In three-body dissociation, Br((2)P(3∕2)) + I((2)P(3∕2)) + I(-) and Br(-) + I((2)P(3∕2)) + I((2)P(3∕2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br(-)((1)S)+I(2)(B(3)Π(0u) (+)) followed by predissociation of I(2)(B).  相似文献   

17.
The predissociation of N(2) from the rotational levels in the o(1)∏(u) (v(') = 2) and b(') (1)Σ(u) (v(') = 8) bands has been studied in the wavenumber (or energy) range from 109?350 cm(-1) (13.5577 eV) to 109?580 cm(-1) (13.5862 eV) by time-sliced velocity-mapped imaging technique with VUV photoionization detection of the fragments. These levels were excited from the ground state of N(2) (X(1)Σ(g) (+), v(") = 0) levels using an unfocused vacuum ultraviolet (VUV) laser via a one-photon process. The same VUV laser is used to ionize the metastable N ((2)D(o)) produced from the predissociation process and the time-sliced velocity-mapped imaging technique is used to determine their velocity and angular distributions. Two different theoretical methods developed, respectively, by Kim et al. [J. Chem. Phys. 125, 133316 (2006) and Zande [J. Chem. Phys. 107, 9447 (1997)] were used to calculate the anisotropic parameters for the predissociation to the channel N((4)S(o)) + N((2)D(o)) to compare with the observed value for each of the rotational levels. Very good agreement with the experimental results was obtained for both methods. Possible predissociation mechanisms were predicted from the measurements and calculations.  相似文献   

18.
Geometry optimization and harmonic vibrational frequency calculations have been carried out on low-lying doublet and quartet electronic states of stannous (tin(II)) dichloride anion (SnCl(2)(-)) employing the CASSCF and RCCSD(T) methods. The small-core fully-relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. The ground electronic state of SnCl(2)(-) is determined to be the X(2)B(1) state, with the A(2)B(2) and ?(4)Sigma state, calculated to be ca. 1.50 and 2.72 eV higher in energy respectively. The electron affinities of the X(1)A(1) and ?(3)B(1) states of SnCl(2) have been computed to be 1.568+/-0.007 and 4.458+/-0.002 eV respectively, including contributions of core correlation and extrapolation to the complete basis set limit. The SnCl(2) (X(1)A(1)) + e <-- SnCl(2)(-) (X(2)B(1)) and SnCl(2) (?(3)B(1)) + e <-- SnCl(2)(-) (X(2)B(1)) photodetachment bands have been simulated with computed Franck-Condon factors, which include an allowance for anharmonicity and Duschinsky rotation.  相似文献   

19.
The reaction of NCN with O is relevant to the formation of prompt NO according to the new mechanism, CH+N2-->cyclic-C(H)NN- -->HNCN-->H+NCN. The reaction has been investigated by ab initio molecular orbital and transition state theory calculations. The mechanisms for formation of possible product channels involved in the singlet and triplet potential energy surfaces have been predicted at the highest level of the modified GAUSSIAN-2 (G2M) method, G2M (CC1). The barrierless association/dissociation processes on the singlet surface were also examined with the third-order Rayleigh-Schr?dinger perturbation (CASPT3) and the multireference configuration interaction methods including Davidson's correction for higher excitations (MRCI+Q) at the CASPT3(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) and MRCI+Q(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) levels. The rate constants for the low-energy channels producing CO+N2, CN+NO, and N(4S)+NCO have been calculated in the temperature range of 200-3000 K. The results show that the formation of CN+NO is dominant and its branching ratio is over 99% in the whole temperature range; no pressure dependence was noted at pressures below 100 atm. The total rate constant can be expressed by: kt=4.23x10(-11) T0.15 exp(17/T) cm3 molecule(-1) s(-1).  相似文献   

20.
Using the complete active space self-consistent field method with a large atomic natural orbital basis set, 10, 13, and 9 electronic states of the OClO radical, OClO(+) cation, and OClO(-) anion were calculated, respectively. Taking the further correlation effects into account, the second-order perturbation (CASPT2) calculations were carried out for the energetic calibration. The photoelectron spectroscopy of the OClO radical and OClO(-) anion were extensively studied in the both case of the adiabatic and vertical ionization energies. The calculated results presented the relatively complete assignment of the photoelectron bands of the experiments for OClO and its anion. Furthermore, the Rydberg states of the OClO radical were investigated by using multiconfigurational CASPT2 (MS-CASPT2) theory under the basis set of large atomic natural orbital functions augmented with an adapted 1s1p1d Rydberg functions that have specially been built for this study. Sixteen Rydberg states were obtained and the results were consistent with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号