首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A wrapped nanoflame retardant, designated as polyhedral oligomeric silsesquioxane (POSS)‐poly(4‐bromostyrene) (PBS)‐carbon nanotubes (CNTs), was synthesized via π‐π stacking interactions between the walls of multiwalled carbon nanotubes and the silicon‐bromine containing hybrid copolymer (designated as POSS‐PBS) that was copolymerized by 4‐bromostyrene and acryloyloxyisobutyl polyhedral oligomeric silsesquioxane. The POSS‐PBS‐CNTs exhibited good dispersibility in epoxy resin (EP) without obvious aggregation. Furthermore, the fire behaviors of this flame‐retardant EP (FR‐EP) nanocomposites were examined via limited oxygen index (LOI) and cone calorimeter (CONE) tests. The FR‐EP had an ideal LOI value of 35.3% and its residual char yield obtained from CONE test was significantly enhanced from 5.9% to 15.3% with the incorporation of 4 wt% POSS‐PBS‐CNTs and 1.33 wt% Sb2O3 into EP matrix. Additionally, the addition of 4 wt% POSS‐PBS‐CNTs or POSS‐PBS can efficiently decrease the peak heat release rate (PHRR) of EP matrix by 41.0% or 45.6%, respectively.  相似文献   

3.
Polylactic acid (PLA) nanocomposites were prepared using cellulose nanowhiskers (CNW) as a reinforcing element in order to asses the value of this filler to reduce the gas and vapour permeability of the biopolyester matrix. The nanocomposites were prepared by incorporating 1, 2, 3 and 5 wt% of the CNW into the PLA matrix by a chloroform solution casting method. The morphology, thermal and mechanical behaviour and permeability of the films were investigated. The CNW prepared by acid hydrolysis of highly purified alpha cellulose microfibers, resulted in nanofibers of 60–160 nm in length and of 10–20 nm in thickness. The results indicated that the nanofiller was well dispersed in the PLA matrix, did not impair the thermal stability of this but induced the formation of some crystallinity, most likely transcrystallinity. CNW prepared by freeze drying exhibited in the nanocomposites better morphology and properties than their solvent exchanged counterparts. Interestingly, the water permeability of nanocomposites of PLA decreased with the addition of CNW prepared by freeze drying by up to 82% and the oxygen permeability by up to 90%. Optimum barrier enhancement was found for composites containing loadings of CNW below 3 wt%. Typical modelling of barrier and mechanical properties failed to describe the behaviour of the composites and appropriate discussion regarding this aspect was also carried out. From the results, CNW exhibit novel significant potential in coatings, membranes and food agrobased packaging applications.  相似文献   

4.
In this study, some aspects concerning the thermal decomposition of starch/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites with 2 wt% nanoclay, prepared by melt mixing method, were studied. For these loadings, the inorganic fillers are well dispersed through the PVA/starch matrix, i.e., the nanocomposites formed are mostly intercalated hybrids. The aim of this article is to establish the effect of the nanofiller nature on the thermal decomposition of the starch/PVA/MMT nanocomposites. The thermal behavior of the 50 wt% starch/50 wt% PVA blend and its nanocomposites with 2 wt% nanoclay has been investigated by thermogravimetric analysis coupled with Fourier transform-infrared spectroscopy and mass spectrometry (MS). The volatile compounds resulting during the thermal degradation were studied by in situ vapor phase FT-IR spectroscopy and MS technique under a controlled temperature/time program. Apart from the identification of the volatile compounds, some conclusions on the nanoclays effect on the degradation mechanism and formation of the volatile compounds in accordance with the previously developed general mechanisms for PVA and starch degradation have been formulated. The clay–PVA/starch nanocomposites show completely different degradation product distribution patterns, which may be attributed to the presence of the head-to-head structures and Si–O–C linkages formed between clay and blend components.  相似文献   

5.
The thermally stimulated charge relaxation properties of polycarbonate (PC) filled with SiO2 nanofiller were studied by means of thermally stimulated discharge current (TSDC). The nanocomposite samples were further characterized by UV–vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectra, and differential scanning calorimetry (DSC) techniques to investigate the dispersion of nanofillers in polymer matrix and glass transition temperature. All pristine and nanocomposites samples of thickness about 25 μm were prepared using solution mixing method. The suitable weight percentage of SiO2 nanofillers has been chosen to prevent the nonuniform dispersion. TSDC measurement of PC (Pristine) and PC+ (7% SiO2) shows the single peak, while TSDC characteristic of other nanocomposites are showing two peaks. The higher temperature TSDC peak of pristine and nanocomposites samples is originated due to the charge relaxation from shallower and deeper trapping sites, however, low temperature peak is caused by dipolar relaxation of charge carriers. Since the position of higher temperature TSDC peak is generally an analysis of glass transition temperature of polymer/polymer nanocomposites. The authors have observed that the temperature of this peak is almost same as the T g measured by DSC with 0 to ±5% variation. This article presents the deeper understanding of charge relaxation mechanism caused by SiO2 nanofillers in polycarbonate.  相似文献   

6.
《先进技术聚合物》2018,29(3):1182-1190
The attempt of this research was to examine the effect of multiwalled carbon nanotube (MWCNT)‐Valine as efficient fillers on the thermal, optical, and electrical behaviors of polystyrene (PS). To reduce aggregation and obtain uniform spreading of fillers into the PS, at first, MWCNTs' surfaces were modified by Valine amino acid. Then, different contents of MWCNT‐Valine (0.5, 1, and 2 wt%) were added to PS by ultrasonication processes. The field emission scanning electron microscopy and transmission electron microscopy results showed a uniform distribution of modified MWCNTs into the matrix. The thermal properties of nanocomposites were improved by increasing nanofiller content. In addition, embedding of MWCNT‐Valine into the PS matrix increased the electrical conductivity of nanocomposites in comparison with pure PS.  相似文献   

7.
Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites   总被引:3,自引:0,他引:3  
A series of polyhedral oligomeric silsesquioxane/epoxy nanocomposites (POSS/EP) containing 0 wt%, 5 wt%, 10 wt% and 15 wt% content of POSS were prepared. Mechanical properties were used as the index to show the effect of POSS on the thermo-oxygen degradation resistance of epoxy resin. And the thermo-oxygen degradation mechanism was investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Results showed that the incorporation of POSS into epoxy networks enhanced the thermo-oxygen resistance of epoxy. POSS led to the formation of inert layer on the surface of materials which could protect the internal structure from decomposition. As a result, the retention of mechanical properties of EP/POSS hybrids increased with the POSS content increasing.  相似文献   

8.
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled.  相似文献   

9.
The photochemical behaviour of polymer–nanoparticles/nanocomposites has been studied depending on the geometry of the nanofiller and an overview of the studies reported in the last decade is tentatively given. Depending on their functionality, nanoparticles can impact the durability of the nanocomposite materials under light irradiation. The behaviour to UV-light exposure in presence of oxygen of various types of nanocomposites with clays, LDH and carbon nanotubes has been investigated and recent progress on the influence of functional nanoparticles on the polymer photodegradation is reported. The influence of photocatalytic (ZnO and TiO2) nanoparticles and phosphors on the photooxidation of the polymeric matrix and the durability of the material properties are characterized. From a general point of view, the stabilization strategy of polymer nanocomposites must be adapted depending on the nanofiller.  相似文献   

10.
The production of exfoliated polymer/clay based nanocomposites is crucial to obtain an actual benefit of nanoscale reinforcement in the polymer matrix. In this project, the production of exfoliated polymer/clay nanocomposite was aimed through the use of poly(ethylene-co-vinyl acetate) (EVA) copolymer as matrix and organically modified montmorillonite (O-MMT) as nanofiller. The research work involved the use of pre-swelled technique through magnetic stirring and ultra-sonication to obtain more readily exfoliated and dispersed O-MMT nanofiller for EVA nanocomposite production. The aims were to allow the improvement in O-MMT exfoliation and dispersion when the nanofiller was incorporated in high loading (greater than 3 wt%) into the copolymer. The original and pre-swelled O-MMTs were employed to produce the EVA/O-MMT nanocomposites with 1, 3, 5, 7 and 9 wt% nanofiller by melt compounding technique. The results of TEM, tensile and fatigue tests, XRD, FTIR and DMA proved that the pre-swelling technique applied on the O-MMT before melt compounding with the EVA copolymer can bring positive impact to the performance of the nanocomposite. As opposed to the original O-MMT, the pre-swelled O-MMT has the ability to improve the tensile toughness, cyclic stability and storage modulus of the EVA copolymer even when high O-MMT loading (7 wt %) was employed. Improvement in the EVA - O-MMT interactions in the nanocomposite system was postulated to be the main reason for such observations.  相似文献   

11.
This article reports on the morphology, interfacial interaction, thermal stability, and thermal degradation kinetics of polycarbonate (PC)/mesoporous silica (MCM-41) composites with various MCM-41 contents, prepared by melt compounding. The composites with low filler loadings (<0.3?wt%) maintained their transparency because of the well dispersed MCM-41 particles, but at higher filler loadings the composites lost their transparency due to the presence of agglomerates. The presence of agglomerates decreased the thermal stability of PC due to the reduced effectiveness of the particles to immobilize the polymer chains, free radicals, and volatile degradation products.  相似文献   

12.
In this study, the effect of polycarbonate (PC)/acrylonitrile butadiene styrene (ABS)‐reinforced multiwall carbon nanotube (MWCNT) nanocomposites under a high‐velocity impact was investigated. PC/ABS (70/30 w/w)/MWCNT nanocomposites containing 1, 2, and 4 wt% were used to manufacture samples for this study. The samples were fabricated in sheet form with 100 × 100 mm dimensions and tested by gas gun for high‐velocity impact tests. The experimental results indicate that the energy absorption, limit velocity, and tensile modulus of the nanocomposite samples increased by approximately 121%, 52%, and 103% for the PC/ABS (70/30 w/w)/2 wt% MWCNT samples respectively. These results were confirmed by a transmission electron microscopy analysis test that was conducted for the state of dispersion of MWCNTs in the nanocomposite samples. The transmission electron microscopy results show that the best morphological structure of carbon nanotube at the interface of PC and ABS is that for the nanocomposite containing 2 wt% MWCNTs, which led to improved interface of the nanocomposites and higher mechanical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We have used molecular simulations to study the properties of nanocomposites formed by the chemical incorporation of polyhedral oligomeric silsesquioxane (POSS) particles in the cross-linked epoxy network. The particular POSS molecule chosen—glycidyloxypropyl-heptaphenyl POSS—can form only one bond with the cross-linker and thus was present as a dangling unit in the network. Four epoxy-POSS nanocomposites containing different fractions (up to 30 mass/%) of POSS particles were studied in this work. Well-relaxed atomistic model structures of the nanocomposites were created and then molecular dynamics simulations were used to characterize the density, glass transition temperature (T g), and the coefficient of volume thermal expansion (CVTE) of the systems. In addition to the effect of nanoparticle loading, the effect of nanoparticle chemistry on the nanocomposite properties was also characterized by comparing these results with our previous results (Lin and Khare, Macromolecules 42:4319–4327, 2009) on neat cross-linked epoxy and a nanocomposite containing a POSS nanoparticle that formed eight bonds with the cross-linked network. Our results showed that incorporation of these monofunctional POSS particles into cross-linked epoxy does not cause a measurable change in its density, glass transition temperature, or the CVTE. Furthermore, simulation results were used to characterize the aggregation of POSS particles in the system. The nanofiller particles in systems containing 11, 20, and 30 mass/% POSS were found to form small clusters. The cluster-size distribution of nanoparticles was also characterized for these systems.  相似文献   

14.
Summary: Extruded poly(ethylene terephthalate)/polycarbonate (PET/PC) blends, with/without cobalt catalyst and at different polymer ratios, were prepared. Rheological behaviour was discussed in terms of storage (G′) and loss (G″) moduli, loss tangent (Tan δ) and viscosity (η). Both G′ and G″ increased as a function of frequency for all blends. PET was the matrix in the blends with 80 and 50 wt% of polyester but in the PC rich-blend an inversion was observed. In all cases, lower Tan δ values were achieved at high frequencies. The viscosity behaviour showed a catalyst dependency. PET dictated the rheological properties of the blends without catalyst whereas PC governed blends with catalyst. Alcoholysis and acidolysis reactions plus a transesterification reaction occurred on the interface was dependent on the matrix component. These reactions seem to occur at higher extent in blends in which PET is the matrix but the inverse happened in the PC rich-blend.  相似文献   

15.
Brewster angle microscopy (BAM) shows that a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS) nanofiller, octaisobutyl-POSS, forms aggregates at all surface concentrations at the air/water interface. When amphiphilic poly(dimethylsiloxane) (PDMS) is blended with the octaisobutyl-POSS (>10 wt % PDMS), the degree of POSS aggregation dramatically decreases. Thermodynamic analyses and morphology studies through surface pressure-area per monomer isotherm data and BAM, respectively, exhibit three distinct composition regimes: (1) Blends with >70 wt % POSS have unstable isotherms whose shapes deviate from those of PDMS and form large rigid domains comparable to but smaller than pure, octaisobutyl-POSS films. (2) At compositions between approximately 40 and 70 wt % POSS, the isotherms' features are qualitatively similar to those of pure PDMS, and extensive nanofiller "networks" are observed by BAM. (3) For compositions < or = approximately 30 wt % POSS, the isotherms are essentially those of pure PDMS with small POSS domains dispersed in the PDMS matrix. These results provide further insight into nanofiller aggregation mechanisms and dispersion that may be present in thicker films and bulk systems.  相似文献   

16.
Due to the added value conferred by zinc oxide (ZnO) nanofiller, e.g., UV protection, antibacterial action, gas-barrier properties, poly(lactic acid) (PLA)–ZnO nanocomposites show increased interest for utilization as films, textile fibers, and injection molding items. The study highlights the beneficial effects of premixing ZnO in PLA under given conditions and its use as masterbatch (MB), a very promising alternative manufacturing technique. This approach allows reducing the residence time at high processing temperature of the thermo-sensitive PLA matrix in contact of ZnO nanoparticles known for their aptitude to promote degradation effects onto the polyester chains. Various PLA–ZnO MBs containing high contents of silane-treated ZnO nanoparticles (up to 40 wt.% nanofiller specifically treated with triethoxycaprylylsilane) were produced by melt-compounding using twin-screw extruders. Subsequently, the selected MBs were melt blended with pristine PLA to produce nanocomposite films containing 1–3 wt.% ZnO. By comparison to the more traditional multi-step process, the MB approach allowed the production of nanocomposites (films) having improved processing and enhanced properties: PLA chains displaying higher molecular weights, improved thermal stability, fine nanofiller distribution, and thermo-mechanical characteristic features, while the UV protection was confirmed by UV-vis spectroscopy measurements. The MB alternative is viewed as a promising flexible technique able to open new perspectives to produce more competitive multifunctional PLA–ZnO nanocomposites.  相似文献   

17.
Octaphenylsilsesquioxane (PH‐POSS) and octa(γ‐methacryloxypropyl)silsesquioxane (MA‐POSS) were successfully synthesized by hydrolytic condensation of phenyltrichlorosilane and γ‐methacryloxypropyltrimethoxysilane, and characterized by Fourier transform infrared (FT‐IR), 1H and 29Si nuclear magnetic resonance (NMR), and matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrum. Morphology, degradation behavior, thermal, and mechanical properties of hybrid composites were studied by transmission electron microscopy (TEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), surface contact angle (SCA), tensile, and impact testing. Domains of PH‐POSS and MA‐POSS dispersed in the matrix with a wide size distribution in a range of 0.1–0.5 µm, while PH‐POSS exhibited a preferential dispersion. Because of the possible homopolymerization of MA‐POSS during the melt blending, the glass transition temperature of polycarbonate (PC)/MA‐POSS composites remained nearly unchanged with respect to PC/PH‐POSS composites that showed a depression of Tg due to the plasticization effect. It is interesting to note that the incorporation of POSS retarded the degradation rates of PC composites and thus significantly improved the thermal stabilities. Si? O fractions left during POSS degradations were a key factor governing the formation of a gel network layer on the exterior surface. This layer possessed more compact structures, higher thermal stabilities, and some thermal insulation. In addition, percentage residues at 700°C (C700) significantly increased from 10.8% to 15.8–22.1% in air. Fracture stress of two composites showed a slight improvement, and the impact strength of them decreased monotonically with the increase of POSS loading. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.

Photo-induced polymerization of 2-hydroxyethyl methacrylate (HEMA) in the presence of various amounts of nonreactive polyhedral oligomeric silsesquioxanes (POSS) functionalized with glycidyl, fluoroalkyl or hydroxyl groups was investigated. HEMA/POSS systems were characterized before, during and after the photocuring, with the special emphasis on the photopolymerization kinetics (measured by isothermal differential scanning calorimetry). It was found that the introduction of tested POSS derivatives into HEMA strongly affects the photopolymerization kinetics (enhancement of the gel effect, increase in the polymerization rate and conversion), mainly due to the increase in the viscosity of the initial formulation which leads to a reduction in the termination rate coefficient. However, interactions HEMA–POSS cause also a slight increase in the propagation rate coefficient. The behavior of the polymerization rate coefficients during the reaction suggests that POSS cages may mitigate the inhibitory effect of viscosity on the diffusion of macroradicals by exerting a slip effect. The materials produced are microcomposites due to the partial phase separation occurring during the curing process. Small amounts of added POSS modifiers cause plasticization of the material; at higher loads, POSS domains behave like nanofiller aggregates that increase the glass temperature. The nonreactive POSS have very little effect on thermal decomposition of the poly-HEMA matrix, which can result in a degree from the phase separation; the latter is also the main cause of the deterioration of the mechanical properties of composites compared to a pure polymer matrix.

  相似文献   

19.
We report on vapochromic films suitable for detecting volatile organic compounds (VOCs), based on polycarbonate (PC) doped with 4‐(triphenylamino)phthalonitrile (TPAP), a fluorescent molecular rotor sensitive to solvent polarity and viscosity. PC films of variable thickness (from 20 up to 80 µm) and containing small amounts of TPAP (0.05 wt%) were prepared and exposed to a saturated atmosphere of different VOCs. TPAP/PC films showed a gradual decrease and red‐shift of the emission during the exposure to solvents with high polarity index and favorable interaction with the polymer matrix such as THF, CHCl3, and acetonitrile. In the case of the most interacting solvents (THF and CHCl3), TPAP/PC films also showed a fluorescence increase at longer exposure times, as a consequence of an irreversible, solvent‐induced crystallization process of the polymeric matrix. The vapochromism of TPAP/PC films is rationalized on the basis of alterations of the rotor intramolecular motion upon solvent uptake by PC and polarity effects of the microenvironment. Interestingly, the fluorescence response of the TPAP/PC films shows a non‐trivial, tuneable dependence on film thickness during the second solvent‐exposure stage. The latter effect is attributed to a variable extent of the crystallization process occurring in the PC films. This observation promptly suggests, in turn, an effective procedure to modulate the spectroscopic response in such functionalized polymeric materials through the precise control of the film thickness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
An oligomer of a diepoxy (diglycidyl ether of bisphenol-A, DGEBA) and an aromatic diamine (MCDEA) have been used as reactive plasticizers for polycarbonate (PC). A small amount of PC chain scission occurred during this blending process, probably due to transesterification of the PC carbonate group by the hydroxyl group of the DGEBA oligomer. Addition of DGEBA to PC was found to greatly reduce the Tg and processing temperature. Dynamic rheology measurements showed that the added epoxy can very effectively reduce the viscosity, but that the addition of epoxy also accelerated the crystallisation rate of the PC, which was confirmed by XRD, optical transmission microscopy and DMTA. The DMTA results of cured blends also showed that this crystallization of the PC enhanced their heat resistance properties. Sol–gel studies of the cured samples showed that some of the PC was grafted to the crosslinked epoxy network. Studies of the rubbery behaviour, solvent resistance of the cured blend and SEM images suggest that PC is the main continuous phase in the matrix and that the epoxy phase is mainly dispersed as sub-micron particles in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号