首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The salient features of the interaction between a free-surface flow and a cylinder of rectangular cross-section are investigated and discussed. Laboratory-scale experiments are performed in a water channel under various flow conditions and elevations of the cylinder above the channel floor. The flow field is characterized on the basis of time-averaged and fluctuating local velocity measurements. Dynamic loadings on the cylinder are measured by two water-insulated dynamometers placed inside the cylinder structure. Starting from frequency and spectral analyses of the force signals, insights on the relationship between force dominant frequencies and the Strouhal number of the vortex shedding phenomenon are provided. Experimental results highlight the strong influence of the asymmetric configuration imposed by the two different boundary conditions (free surface and channel floor) on (i) the mean force coefficients and (ii) the vortex shedding frequencies. We provide an analysis of the nature of the dependence of average force coefficients on relevant dimensionless groups, i.e., the Reynolds number, normalized flow depth and cylinder submersion.  相似文献   

2.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

3.
This article describes results of experiments on vortex-shedding frequencies and surface pressures of a square cylinder at non-zero angle of incidence. The range of Reynolds numbers was 2000–21 000, but the lower range was emphasized. For Reynolds numbers greater than 5300, the Strouhal number shows a similar trend with changing angle of incidence; that is, a rapid rise in Strouhal number occurs at an angle of around 13°. The occurrence of such a jump in Strouhal number was found to be associated with onset of the flow reattachment, bringing in a strong pressure recovery on the lower side face of the cylinder. For lower Reynolds numbers Re=2000–3300, the maximum Strouhal number occurs at a relatively higher angle of 17°. Around this angle, the pressure measurements exhibit a rather weak pressure recovery, suggesting a less firm shear-layer reattachment to the side face of the cylinder. The nature of the reattaching flow was further examined by spectral analysis of the fluctuating pressure coefficients measured on the lower side face of the cylinder.  相似文献   

4.
Aeroelastic instability of a circular cylinder with surface roughness was experimentally studied by free-oscillation tests in a wind tunnel. Flows at high Reynolds numbers could be simulated at relatively low wind velocities, by introducing surface roughness, so as to reduce the value of the critical Reynolds number. The response amplitudes of a roughened cylinder oscillating in the transverse (cross-flow) direction in the flow were measured. The measured range of reduced velocity is about 1·5–8, which includes the critical velocity. The value of a reduced mass-damping parameter (the Scruton number) is constant at about 6. For the aeroelastic instability in the transverse direction, it was found that the oscillation of the roughened cylinder induced by a vortex-excitation is damped down in a small velocity range covering the critical Reynolds number. At Reynolds numbers higher than the critical value, a roughened cylinder vibrates with a large amplitude again, associated with a lock-in phenomenon due to the coincidence of the wake-frequency and the natural frequency of the oscillating cylinder.  相似文献   

5.
Performance evaluation of surface roughened compact channels for heat transfer applications has been investigated using non-intrusive, real time laser-based interferometric technique with water as the coolant medium. The lower wall of the channel has been roughened by creating hemispherical inward dimples. Projection data of the temperature field has been recorded using a Mach Zehnder interferometer. In order to facilitate direct comparison, experiments have also been conducted in smooth channel of similar dimensions. Results have been presented in the form of thermal boundary layer profiles, whole field temperature distributions and local variations of heat transfer coefficients. Direct interferometric measurements clearly reveal the disruption of thermal boundary layer due to the presence of inward dimples. Near wall temperature gradients were seen to be stronger in the case of dimpled channel in comparison with that of the smooth one resulting into a clear enhancement in heat transfer rates. At low Reynolds numbers, variation of heat transfer coefficients along the length of the dimpled channel showed the presence of local maxima. On the other hand, the corresponding profiles for the smooth channels showed a monotonic decrease with respect to the axial direction. The dynamic measurements, that are purely non-intrusive, revealed an improved thermal performance of surface roughened compact channels.  相似文献   

6.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

7.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.   相似文献   

8.
This paper reports velocity measurements obtained on a smooth and two geometrically different types of rough surfaces in an open channel. The measurements were obtained using a laser-Doppler anemometer. The recent boundary layer theory proposed by George and Castillo (1997) and conventional scaling laws are used to analyze the data. The present flow shows a strong structural similarity to a canonical turbulent boundary layer in the inner layer. The results demonstrate that surface roughness increases the wake parameter. Surface roughness also enhances the levels of turbulence intensities, Reynolds shear stress and triple correlations over most of the boundary layer, but decreases the stress anisotropy.  相似文献   

9.
It is well known that injection/suction (transpiration) through a perforated surface is an efficient way of influencing the characteristics of a turbulent boundary layer. Injection application creates a thicker boundary layer on a flat plate and it thus decreases drag. In aeronautical applications, suction is frequently used to delay boundary layer separation. This paper presents an experimental study on the effects of uniform injection through one perforated surface of a square cylinder on the pressure distribution and drag coefficient in a two-dimensional turbulent flow. For this purpose, surface pressure measurements around a square cylinder have been performed at three different Reynolds numbers in a wind tunnel. The parameters taken into account were injection rate, position of perforated surface (i.e., front, top, and rear), and pressure coefficient and drag coefficient. The results show that variation in pressure coefficient around the square cylinder and drag coefficient were influenced by the position of perforated surface and by injection rate.  相似文献   

10.
Turbulent coherent structures near a rod-roughened wall are scrutinized by analyzing instantaneous flow fields obtained from direct numerical simulations (DNSs) of a turbulent boundary layer (TBL). The roughness elements used are periodically arranged two-dimensional spanwise rods, and the roughness height is k/δ = 0.05 where δ is the boundary layer thickness. The Reynolds number based on the momentum thickness is varied in the range Reθ = 300–1400. The effect of surface roughness is examined by comparing the characteristics of the TBLs over smooth and rough walls. Although introduction of roughness elements onto the smooth wall affects the Reynolds stresses throughout the entire boundary layer when scaled by the friction velocity, the roughness has little effect on the vorticity fluctuations in the outer layer. Pressure-strain tensors of the transport equation for the Reynolds stresses and quadrant analysis disclose that the redistribution of turbulent kinetic energy of the rough wall is similar to that of the smooth wall, and that the roughness has little effect on the relative contributions of ejection and sweep motions in the outer layer. To elucidate the modifications of the near-wall vortical structure induced by surface roughness, we used two-point correlations, joint weighted probability density function, and linear stochastic estimation. Finally, we demonstrate the existence of coherent structures in the instantaneous flow field over the rod-roughened surface.  相似文献   

11.
The boundary layer on a long cylinder with its axis at small inclinations to the freestream (an idealisation of “streamers” used in underwater seismic surveys) has been studied experimentally. For the range of incidence 0–6°, there is no evidence of vortex shedding at typical Reynolds numbers. The circumferentially averaged fluctuating wall pressure decreases with increasing incidence, showing that increases in extraneous noise in seismic measurements when the streamer is at incidence are not caused by the changes in boundary layer structure. Wavenumber–frequency spectra of the circumferentially averaged wall pressure show a convective ridge that persists for the range of incidences studied. Received: 10 June 2000/Accepted: 4 July 2001  相似文献   

12.
Converged simulations of vortex shedding from a circular cylinder at a Reynolds number of 100 have been computed by the random-vortex method incorporating the influence of blockage. The results are compared with converged finite-element and spectral methods and close agreement for Strouhal number is obtained. Forces are, however, in less close agreement, particularly the fluctuating lift force. Strouhal numbers from simulations with zero blockage for Reynolds numbers between 60 and 180 are seen to be in very close agreement with experiments which are said to be effectively two-dimensional. In this range the Strouhal number changes from 0·135 to 0·191. There are no corresponding experimental measurements for force.  相似文献   

13.
The results of an experimental investigation of the effect of the streamwise pressure gradient in a turbulent boundary layer on the permissible height of the surface roughness of bodies in an incompressible fluid flow are presented. The permissible roughness Reynolds number for which the characteristics of the turbulent boundary layer remain the same as in the case of flow past a smooth surface is determined.  相似文献   

14.
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier–Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi’s iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.  相似文献   

15.
基于平板湍流边界层的壁压起伏波数—频率谱 ,给出了一种湍流边界层声辐射的估算方法 ,并对光滑平板湍流边界层和平板表面粗糙度引起的湍流边界层声辐射进行了分析。结果表明 :湍流边界层声辐射是一种四极子声辐射 ,且其辐射声能集中于平板表面粗糙度引起的湍流边界层声辐射 ;光滑平板湍流边界层的声辐射也不可忽略。  相似文献   

16.
We investigate numerically the electromagnetic control of seawater flows over an infinitely long circular cylinder. Stripes of electrodes and magnets, wrapped around the cylinder surface, produce a tangential body force (Lorentz force) that stabilizes the flow. This mechanism delays flow separation, reduces drag and lift, and finally suppresses the von Kármán vortex street. Results from two-dimensional simulations of the Navier–Stokes equations in a range 10<Re<300 and Lorentz force calculations are presented. Emphasis is placed on the disclosure of physical phenomena as well as a quantitative detection of the flow field and forces. It is shown that the drag strongly depends on the geometry of the electromagnetic actuator and on its location at the cylinder surface. The effect of flow control increases with larger Reynolds numbers, since the boundary layer thickness and the penetration depth of the Lorentz force are closely connected.  相似文献   

17.
The effect of a single two-dimensional irregularity and sandy roughness on boundary layer transition in supersonic flow over a yawed cylinder (M = 6)-has been experimentally investigated. The characteristic flow regimes beyond the roughness are identified, and their limits are determined as a function of the Reynolds number and the ratio of the height of the roughness to the characteristic thickness of the boundary layer. A qualitative comparison is made with the flow regimes induced by roughness on the attachment line in incompressible flow over a cylinder [1–3]. The thermal indicator coating method is used to measure the heat fluxes along the attachment line and a comparison is made with calculations carried out in accordance with the methods of other authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 28–35, November–December, 1991.The authors are grateful to A. F. Kiselev for helping to calculate the heat flux in the turbulent boundary layer.  相似文献   

18.
The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.  相似文献   

19.
Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the $ k_{s}^{ + } $ increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the transitionally rough surfaces from $ (y + \varepsilon)^{ + } \approx 100 $ up to the end of the boundary layer.  相似文献   

20.
Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105–5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号