首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mean velocity profiles in a zero pressure gradient turbulent boundary layer were measured on a hydraulically smooth surface and three different rough surfaces created from sand paper, perforated plate, and woven wire mesh. The physical size and geometry of the roughness elements were chosen to encompass both transitionally and fully rough flow regimes. The mean velocity profiles were measured using a Pitot tube in a subsonic wind tunnel, for Reynolds numbers (based on momentum thickness) ranging from 3,730 to 12,260. Three different outer velocity scales were used to analyze the defect profile. The results show that application of a so called mixed outer scale causes the velocity profile in the outer region to collapse onto the same curve for different Reynolds numbers and roughness conditions. Although the mixed scale collapses defect profiles on different surfaces, the effect of surface roughness is still observed in the outer region.  相似文献   

2.
平屋盖风压分布的数值模拟   总被引:2,自引:0,他引:2  
基于Reynolds时均N-S方程和RSM模型对平屋面的风压分布进行了数值模拟,在此基础上系统研究了风向角、跨高比、地面粗糙度、风速等因素对屋面风压分布的影响,探讨了结构周围流场的绕流特性,最后根据屋面的结构形式及风压分布特点将屋面进行分区,给出了屋面在不同风向角下的分区风载体型系数以供工程设计参考。  相似文献   

3.
In this paper, the effects of turbulence on sound generation and velocity fluctuations due to pressure waves in a large subsonic wind tunnel are studied. A trip strip located at different positions in the contraction part or at one position in the diffuser of a large wind tunnel is used to investigate the aforementioned phenomenon, and the results indicate that the trip strip has significant effects on sound reduction. The lowest turbulence intensity and sound are obtained from a trip strip with a diameter of 0.91 mm located either at X/L = 0.79 or at X/L = 0.115 in the wide portion of the contraction. Furthermore, the effect of monopole, dipole and quadrupole sources of aerodynamic noise at different velocities is investigated, and it is demonstrated that the contribution of the monopole is dominant, while the shares due to the dipole and quadrupole remain less important. In addition, it is found that the sound waves have a modest impact on the measured longitudinal turbulence and are generated essentially by eddies.  相似文献   

4.
Aeroelastic instability of a circular cylinder with surface roughness was experimentally studied by free-oscillation tests in a wind tunnel. Flows at high Reynolds numbers could be simulated at relatively low wind velocities, by introducing surface roughness, so as to reduce the value of the critical Reynolds number. The response amplitudes of a roughened cylinder oscillating in the transverse (cross-flow) direction in the flow were measured. The measured range of reduced velocity is about 1·5–8, which includes the critical velocity. The value of a reduced mass-damping parameter (the Scruton number) is constant at about 6. For the aeroelastic instability in the transverse direction, it was found that the oscillation of the roughened cylinder induced by a vortex-excitation is damped down in a small velocity range covering the critical Reynolds number. At Reynolds numbers higher than the critical value, a roughened cylinder vibrates with a large amplitude again, associated with a lock-in phenomenon due to the coincidence of the wake-frequency and the natural frequency of the oscillating cylinder.  相似文献   

5.
This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42×10 6 to 0.84 × 10 6 and the reduced frequency was varied from 0.01 to 0.11.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.  相似文献   

6.
Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.  相似文献   

7.
Roy  A.  Mukherjee  R. 《Fluid Dynamics》2022,56(1):S1-S18

This paper identifies laminar separation bubbles at the root or span-wise midsection of a rectangular wing using direct surface pressure measurements in the wind tunnel and analyses their behavior at different Reynolds numbers and angles of attack. The separation, transition, and reattachment locations are determined as functions of the angles of attack and the Reynolds number. The transition structure and turbulence characteristics in the separated shear layer are studied using laser Doppler velocimetry. Surface pressure data and simultaneously acquired velocity signals are correlated to show the pattern of growing disturbances in the shear layer. Surface oil flow visualizations clarified the wingtip and separation bubble’s interactions near the leading edge of the wing at the higher angles of attack. Turbulence statistics are also calculated from the streamwise velocity distributions, and an apparent deviation is observed for the skewness and flatness values from the normal distributions in the near-wall region. The separation bubble effect on aerodynamic coefficients of a 3D rectangular wing root section is studied and reported.

  相似文献   

8.
A 2-D turbulent boundary layer experiment with zero pressure gradient (ZPG) has been carried out over a rough and a smooth surface using two cross hot-wire probes. Wind tunnel speeds of 10 m/s and 20 m/s were set up in order to investigate the effects of the upstream conditions and the Reynolds number on the downstream flow. For a given set of upstream conditions, such as the wind tunnel speed, trip wire size and location, the three components of the velocity field were measured from about 14 m from the inlet of the wind tunnel to 30 m downstream. This experiment is unique because it achieves Reynolds numbers as high as R120,000, for which measurements of the mean velocity are reported. It is shown that by fixing the upstream conditions, the mean deficit profiles collapse with the freestream velocity, , but to different curves depending on the upstream conditions and surface roughness. Moreover, the effects of the upstream conditions, the Reynolds number, and roughness are completely removed from the outer flow when the mean deficit profiles are normalized by the Zagarola/Smits scaling, . Consequently, the true asymptotic profile in the turbulent boundary layer is found in ZPG flow regardless of the range of Reynolds number, surface conditions and initial conditions.  相似文献   

9.
A new facility for studying high Reynolds number incompressible turbulent boundary layer flows has been constructed. It consists of a moderately sized wind tunnel, completely enclosed by a pressure vessel, which can raise the ambient air pressure in and around the wind tunnel to 8 atmospheres. This results in a Reynolds number range of about 20:1, while maintaining incompressible flow. Results are presented for the zero pressure gradient flat plate boundary layer over a momentum thickness Reynolds number range 1500–15?000. Scaling issues for high Reynolds number non-equilibrium boundary layers are discussed, with data comparing the three-dimensional turbulent boundary layer flow over a swept bump at Reynolds numbers of 3800 and 8600. It is found that successful prediction of these types of flows must include length scales which do not scale on Reynolds number, but are inherent to the geometry of the flow.  相似文献   

10.
相邻高层建筑表面风压的数值模拟   总被引:7,自引:0,他引:7  
采用数值模拟方法对一幢由主楼和配楼组成的复杂高层建筑的表面风压进行了模拟计算,考虑了相邻一幢高层建筑对风压分布的影响。计算得到的风压值还与风洞试验值作了比较。结果表明,数值模拟较好地反映了复杂高层建筑的周围流线和表面风压的分布情况;同时,由于相邻建筑物的存在,使得原有建筑的时均流线分布尤其是涡流的数目和尺度以及建筑表面的时均风压分布均发生了较明显的改变。  相似文献   

11.
The surface pressure distribution and the vortex shedding frequency were investigated for the flow around perforated horizontal and diagonal square cylinders with surface injection through various surfaces. For this purpose, surface pressure measurements on each square cylinder (horizontal and diagonal) and vortex shedding frequency measurements in the wake region were performed at three different Reynolds numbers in a wind tunnel. The parameters considered were injection coefficient, position of perforated surface (i.e., top, rear, top-rear and all), pressure coefficient, drag coefficient, and the Strouhal number. The results showed that pressure coefficient distribution, drag coefficient, and the Strouhal number were influenced by the position of the perforated surface and by the injection coefficient. The surface injections through the top-rear, rear and all surfaces of a diagonal square cylinder reduce the drag coefficient for the all Reynolds numbers, while the injection through all surfaces only reduces the drag coefficient of a horizontal square cylinder. The other aerodynamic parameter Strouhal number can also be controlled by injection through certain surfaces of a horizontal square cylinder.  相似文献   

12.
The results of an experimental investigation of the flow around a sphere over a broad range of Mach numbers M=0.3–3 and Reynolds numbers Re=3·104–3·107 are presented. The experiments were carried out on a ballistic test stand and in a wind tunnel. Flow patterns and pressure distributions were obtained. In particular, the effect of the Mach and Reynolds numbers on the position of the separation point and the edge shock was studied; the pressure distribution on the sphere was measured; and a nonmonotonic displacement of the flow separation point upon passage through the speed of sound was established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 152–156, January–February, 1991.  相似文献   

13.
The effect of riblets on laminar to turbulent transition   总被引:2,自引:0,他引:2  
Experiments conducted on the effect of riblets on the laminar-to-turbulent transition of a flat plate in a water tunnel are reported. Transition was determined using a Laser Doppler Velocimeter (LDV). A smooth reference surface was compared to five riblet surfaces for a range of Reynolds numbers. Smooth surface transition Reynolds number was about 2.75 × 106. All of the five tested riblet surfaces had lower transition Reynolds numbers. A critical roughness Reynolds number of about 6 was determined for one of the riblet surfaces. This is much lower than the generally accepted value of 25, considered safe for distributed roughness.  相似文献   

14.
顾志福  杨乐天  李燕 《力学季刊》2007,28(4):599-603
通过风洞模拟实验对双曲面形屋盖的平均风荷载特点进行了研究.文中给出了屋盖的平均风荷载随风向角改变的变化特点和规律,特别讨论产生这些特点的原因及其流动机理.结果表明,在所有风向角下,双曲面屋盖除了在位于下游的边缘的挑檐位置外,都是负压分布.局部负压最大值主要出现在迎风挑檐的边缘部分.虽然屋盖的局部负压峰值随风向角改变,位置和数值变化都很大,然而,作为屋盖整体,平均风压平均值随风向角的变化很小.有关结果为类似建筑项目的风荷载设计和相应规范的制定和修改提供了有用的信息和材料.  相似文献   

15.
针对新设计的超临界翼型,采用风洞实验方法验证和评估了其气动特性。在增压连续式跨音速风洞(NF-6风洞)开展了超临界翼型跨音速特性的实验研究,验证了该翼型设计的压力分布曲线特点。激波位置和波后压力平台区长度表明设计结果和实验结果基本一致,揭示了超临界翼型跨音速的气动特性;阻力发散马赫数达到期望的设计指标,探讨了雷诺数对该翼型气动特性的影响。最后采用升华法实现了翼型表面流动特性的显示。结果表明转捩点约在16%弦长位置。  相似文献   

16.
Supersonic flight of aerospace planes is of marked interest since several flow regimes characterized by different local flow structures have to be flown through. This problem was investigated experimentally for the hypersonic research configuration ELAC 1. The aim of the study was to detect the influence of the rounded leading edge, of the thickness distribution prescribed, and of the Reynolds number, especially on the flow on the leeward side of the configuration. The experiments were carried out in the transonic wind tunnel of Aerodynamisches Institut of RWTH Aachen, at a freestream Mach number Ma =2, a unit Reynolds number of Re =13×106, angles of attack between ?3°?α?10°, and in a wind tunnel of the Institute for Theoretical and Applied Mechanics of the Russian Academy of Sciences in Novosibirsk. The freestream Mach numbers covered in these experiments were varied between 2?Ma ?4, freestream Reynolds numbers per unit length between 25×106?Re ?56×106 and angles of attack between ?3°?α?10°. Flow visualization studies, measurements of surface pressure distributions and of aerodynamic forces were used to analyze the flow. The results, which will also be compared with numerical data, clearly indicate marked differences in the location of the separation and reattachment lines, and the formation of the primary, secondary and tertiary vortices, for the flow regimes investigated.  相似文献   

17.
It is well known that injection/suction (transpiration) through a perforated surface is an efficient way of influencing the characteristics of a turbulent boundary layer. Injection application creates a thicker boundary layer on a flat plate and it thus decreases drag. In aeronautical applications, suction is frequently used to delay boundary layer separation. This paper presents an experimental study on the effects of uniform injection through one perforated surface of a square cylinder on the pressure distribution and drag coefficient in a two-dimensional turbulent flow. For this purpose, surface pressure measurements around a square cylinder have been performed at three different Reynolds numbers in a wind tunnel. The parameters taken into account were injection rate, position of perforated surface (i.e., front, top, and rear), and pressure coefficient and drag coefficient. The results show that variation in pressure coefficient around the square cylinder and drag coefficient were influenced by the position of perforated surface and by injection rate.  相似文献   

18.
The aerodynamic characteristics and distinctive features of the flow past hypersonic integral-layout flight vehicles with air-breathing engines intended for cruise flight in the atmosphere are experimentally investigated. The experiments were conducted on a simplified model designed with regard for the general principles of integration of vehicles of the class considered. The tests were performed in a wind tunnel over the Mach and Reynolds number ranges 0.6 ≤ M ≤ 4 and 6.3 × 106 ≤ Re ≤ 16 × 106, respectively. Balance testing was carried out, the pressure distributions over the vehicle surface were measured, and the flowfields on the model surface were photographed. The effects of mounting a nacelle and contouring the internal duct are considered. The effect of the corrections on the duct flow in the absence of jet modeling is estimated. The results obtained can be used as a basis for developing the aerodynamic configurations of integral-layout flight vehicles, for forming their thrust and aerodynamic parameters under full-scale flight conditions, and for testing computation methods.  相似文献   

19.
The effect of rough surface topography on heat and momentum transfer is studied by direct numerical simulations of turbulent heat transfer over uniformly heated three-dimensional irregular rough surfaces, where the effective slope and skewness values are systematically varied while maintaining a fixed root-mean-square roughness. The friction Reynolds number is fixed at 450, and the temperature is treated as a passive scalar with a Prandtl number of unity. Both the skin friction coefficient and Stanton number are enhanced by the wall roughness. However, the Reynolds analogy factor for the rough surface is lower than that for the smooth surface. The semi-analytical expression for the Reynolds analogy factor suggests that the Reynolds analogy factor is related to the skin friction coefficient and the difference between the temperature and velocity roughness functions, and the Reynolds analogy factor for the present rough surfaces is found to be predicted solely based on the equivalent sand-grain roughness. This suggests that the relationship between the Reynolds analogy factor and the equivalent sand-grain roughness is not affected by the effective slope and skewness values. Analysis of the heat and momentum transfer mechanisms based on the spatial- and time-averaged equations suggests that two factors decrease the Reynolds analogy factor. One is the increased effective Prandtl number within the rough surface in which the momentum diffusivity due to the combined effects of turbulence and dispersion is larger than the corresponding thermal diffusivity. The other is the significant increase in the pressure drag force term above the mean roughness height.  相似文献   

20.
The present paper addresses experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. A momentum thickness Reynolds number varies from 1,100 to 20,100 with a wind tunnel enclosed in a pressure vessel by varying the air density and wind tunnel speed. A custom-built, high-resolution laser Doppler anemometer provides fully resolved turbulence measurements over the full Reynolds number range. The experiments show that the mean flow is at most a very weak function of Reynolds number while turbulence quantities strongly depend on Reynolds number. Roller vortices are generated in the separated shear layer caused by the Kelvin–Helmholtz instability. Empirical Reynolds number scalings for the mean velocity and Reynolds stresses are proposed for the upstream boundary layer, the separated region, and the recovery region. The inflectional instability plays a critical role in the scaling in the separated region. The near-wall flow recovers quickly downstream of reattachment even if the outer layer is far from an equilibrium state. As a result, a stress equilibrium layer where a flat-plate boundary layer scaling is valid develops in the recovery region and grows outward moving downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号