首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a solvothermal method preparation of dendritic Pd nanoparticles(DPNs) and spherical Pd nanoparticles(SPNs) supported on reduced graphene oxide(RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide(GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.  相似文献   

2.
Reduced graphene oxide, RGO (also called chemically modified graphene, CMG) was synthesized by a simple hydrothermal method, with graphite oxide (GO), prepared by the modified Hummers method, served as the raw material. Structural and morphological studies indicate the degree of reduction is dependent on the temperature, which is also verified by Raman analysis. The variation in interlayer distance and the intensity ratio of the D to G Raman modes (ID/IG) indicates higher reaction temperature can accelerate the reduction of GO. The conductivity also varies with the degree of reduction, as verified by electrochemical analyzer. Moreover, the reaction process affects organic functional groups, the mechanism during the reaction process is discussed.  相似文献   

3.
Two dimensional (2D) Pd nanosheets supported on reduced graphene oxide (Pd/rGO) were prepared through a sonochemical routine induced by cetyltrimethylammonium bromide (CTAB). Coral-like porous Pd nanosheets (Pd/rGO-u) were obtained under the sonication condition (25 kHz, 600 W, ultrasonic transducer), while square Pd nanosheets (Pd/rGO-c) were produced via traditional chemical reduction. The size of Pd nanosheets of Pd/rGO-u and Pd/rGO-c are 69.7 nm and 59.7 nm, and the thickness are 4.6 nm and 4.4 nm, respectively. The carrier GO was proved to be partially reduced to rGO with good electrical conductivity and oxygen-containing groups facilitated a good dispersion of Pd nanosheets. The interaction between GO and CTAB made the alkyl chain assembles to a 2D lamella micelles which limit the growth of Pd atoms resulting in the formation of 2D nanosheets. A high ultrasonic power promotes the reduction and the formation of porous structure. Additionally, Pd/rGO-u exhibited a favorable electrocatalytic performance toward oxygen reduction reaction (ORR) in alkaline condition, which provided a potential synthetic strategy assisted by sonication for high-performance 2D materials.  相似文献   

4.
The binary PdM (M=Co, Ni, Cu) catalysts were synthesized with one-pot on reduced graphene oxide (RGO) using the sodium borohydride reduction method under the existence of the polyethylene glycol (PEG). And the catalysts were used for the electro-oxidation of methanol in alkaline media. Cyclic voltammetry (CV) and chronoamperometry (i-t) tests indicated that the Pd-based binary systems significantly enhanced electrochemical activities and improved stability compared with the monometallic Pd/RGO and commercial Pd/C (JM) catalysts. The lower onset potentials of PdM/RGO indicated that the prepared PdM/RGO catalysts had the better electrochemical performance than Pd/RGO and Pd/C (JM). Physicochemical properties of the PdM/RGO catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman. These results show that the better electrochemical performance of PdM/RGO can be ascribed to the addition of the second metal and PEG, because M successfully modified the morphology and electronic structure of Pd, and improved dispersibility of PdM on the reduced graphene oxide. And these modifications can be easily carried out under the presence of PEG.  相似文献   

5.
李峰  肖传云  阚二军  陆瑞锋  邓开明 《物理学报》2014,63(17):176802-176802
本文采用密度泛函计算方法,研究了钯和铂金属在石墨烯表面不同的生长机理.几何结构和电子结构分析表明,钯金属的d2z轨道电子通过石墨烯的π电子为中介,转移电子至钯金属的dxz+dyz轨道,并保持石墨烯的π电子不变.该电荷转移机理增强了钯金属与石墨烯衬底之间的相互作用,是钯在石墨烯表面生长的主要原因.反之,铂金属不存在该生长机理,而铂原子的自发团聚是铂金属无法在石墨烯表面生长的另一主要原因.  相似文献   

6.
孙建平*  缪应蒙  曹相春 《物理学报》2013,62(3):36301-036301
基于第一性原理的密度泛函理论研究了单个O2和CO气体分子吸附于本征石墨烯和掺杂钯(Pd)的石墨烯的体系, 通过石墨烯掺Pd前后气体分子的吸附能、电荷转移及能带和态密度的计算, 发现掺Pd后气体分子吸附能和电荷转移显著增大, 这是由于Pd的掺杂, 在本征石墨烯能带中引入了杂质能级, 增强了石墨烯和吸附气体分子间的相互作用; 氧化性气体O2和还原性气体CO吸附对石墨烯体系能带结构和态密度的影响明显不同, 本征石墨烯吸附O2后, 费米能级附近态密度变大, 掺Pd后在一定程度变小; 吸附还原性的CO后, 石墨烯费米能级附近态密度几乎没有改变, 表明掺杂Pd不会影响石墨烯对CO的气体灵敏度, 但由于CO对石墨烯的吸附能增大, 可以提高石墨烯对还原性气体的气敏响应速度.  相似文献   

7.
Recently a large interest has arisen for using less active reducers of graphene oxide, GO, that are friendly with the environment. In the present work, a DFT theoretical study on the reduction process of GO model surfaces is performed taking into account zwitterionic dopamine, ZDA, as reducing agent. Several periodic models representing epoxy and hydroxyl patches on GO basal plane are proposed. As the number of oxide groups in a patch of epoxies or hydroxyls on the surface of graphene increases from 1 to 5, these systems become more stable. Whereas the adsorption of ZDA on patches of GO with 5 epoxy groups is non-dissociative, that of ZDA on patches of GO with 5 hydroxyl groups is fundamentally dissociative, reducing the surface of graphene oxide. The H2O molecule produced in the GO reduction becomes trapped to ZDA through a hydrogen bond. The ZDA binding to GO was analysed by considering electrostatic effects and attractive non-covalent contributions due to vdW interactions.  相似文献   

8.
We report on a simple and facile synthesis route for the sulfur/graphene oxide composite via ultrasonic mixing of the nano-sulfur and graphene oxide aqueous suspensions followed by a low-temperature heat treatment. High-resolution transmission and scanning electronic microscopy observations revealed the formation of a highly porous structure consisting of sulfur with uniform graphene oxide coating on its surface. The resulting sulfur/graphene oxide (S/GO) composite exhibited high and stable specific discharge capacities of 591 mAh g?1 after 100 cycles at 0.1 C and good rate capability. This enhanced electrochemical performance could be attributed to the effective confining the polysulfides dissolution and accommodation of the volume changes during the Li-S electrochemical reaction by the functional groups on the graphene oxide coating layer. Furthermore, the highly developed porous structure of S/GO composite favors the enhanced ion transport and electrolyte diffusion.  相似文献   

9.
In graphene oxide, the graphite lattice is intercalated with oxygen groups that bond to carbon atoms. These groups have a bearing on the possibility of using graphene oxide as a precursor to make graphene. The nature of carbon bonds in graphene oxide has been characterized with soft x‐ray reflection spectroscopy across the carbon K‐edge. Results distinguish graphene oxide synthesized with Hummers' method from that made using a method suggested by Tour. The observed spectra are consistent with those from near‐edge x‐ray absorption fine structure (NEXAFS) measurements. In particular, the expected carbon K‐edge resonances associated with excitations into molecular π*‐ and σ*‐states of C? C bonds can be identified. Importantly, the greater oxidation efficiency of the method by Tour may be the reason for the observation of additional resonances that have been assigned to carbon bonding with molecular groups containing oxygen. The additional resonances have been interpreted as the excitations of carbon 1 s electrons into the carbonyl π*(C?O) orbital in the molecular group –COOH and into the hydroxyl π*(C? OH) orbital, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
还原氧化石墨烯是大规模生产石墨烯的前体;然而迄今为止,还原氧化石墨烯的电子结构还没有达成共识. 本文运用从头分子动力学方法研究羟基在石墨烯表面的吸附过程. 在吸附过程中,OH基团首先在位于两个碳原子桥位上方形成物理吸附络合物,然后翻越过渡态,最终被吸附在一个碳原子的顶位位点. 结果显示5×5石墨烯表面最多可以吸附6个羟基,表明石墨烯表面羟基的覆盖率约为12%. 计算结果还显示,负吸附能随着羟基吸附数目的增加而线性增加,带隙也随着羟基吸附数目的增加而线性增加.  相似文献   

11.
Chars and carbonised chars were produced from two oxygen-rich precursors (Phormium tenax leaf fibres and sucrose crystals) and compared to thermally reduced graphene oxide (TRGO) samples using a range of analytical techniques. A hypothesis that carbonised chars are chemically and nanostructurally more similar to TRGOs than to other proposed structural analogues such as graphites and fullerenes was investigated. The greatest similarities in chemical structural features were observed between the well-carbonised chars and thermally reduced graphene oxide both of which had been prepared using heat treatment temperatures above ≈700 °C. However, thermal analysis and infra-red spectroscopy demonstrated how the char formation process differs from the early stages of the thermal reduction of graphene oxide. Major differences in morphology between TRGOs and various chars were also clearly observable using scanning electron microscopy. Prominent signals indicating the presence of aromatic C–H functional groups were observable in char samples and negligible in the thermally reduced graphene oxide samples when both were analysed by infra-red spectroscopy. The similarities and differences on a nanostructural scale between carbonised chars and thermally reduced graphene oxide are discussed with a focus on clarifying existing models for non-graphitisable carbons produced from oxygen-rich precursors.  相似文献   

12.
本研究采用密度泛函理论研究了纯的及V,Fe,Ni,Pd,Si,P,S和Cl掺杂原子的石墨烯和CaH_2分子之间相互作用.研究结果发现CaH_2分子与所有石墨烯表面均具有较大的相互作用,而CaH_2分子与掺杂石墨烯相互作用都大于与纯石墨烯的相互作用,在所有掺杂原子中,其中与Pd掺杂石墨烯具有最大的相互作用,S次之,其它掺杂石墨烯与CaH_2分子相互作用能力相差不大.这些结果表明虽然所有石墨烯均有助于CaH_2中H原子的脱附,但掺杂石墨烯脱附能力仍然大于纯的石墨烯.在掺杂原子中,Pd和S掺杂石墨烯对CaH_2中H原子的脱附效果最好,其它的掺杂原子脱附效果相差不明显.此研究结果将有望为CaH_2分子在石墨烯基材料中吸氢-脱氢行为提供有用的理论参考价值.  相似文献   

13.
本研究采用密度泛函理论研究了纯的及V, Fe, Ni, Pd, Si, P, S和Cl掺杂原子对石墨烯和CaH2分子之间相互作用. 研究结果发现CaH2分子与所有石墨烯表面均具有较大的相互作用, 而CaH2分子与掺杂石墨烯相互作用都大于与纯石墨烯的相互作用, 在所有掺杂原子中, 其中与Pd掺杂石墨烯具有最大的相互作用, S次之, 其它掺杂石墨烯与CaH2分子相互作用能力相差不大. 这些结果表明虽然所有石墨烯均有助于CaH2中H原子的脱附, 但掺杂石墨烯脱附能力仍然大于纯的石墨烯. 在掺杂原子中, Pd和S掺杂石墨烯对CaH2中H原子的脱附效果最好, 其它的掺杂原子脱附效果相差不明显. 此研究结果将有望为CaH2分子在石墨烯基材料中吸氢-脱氢行为提供有用的理论参考价值.  相似文献   

14.
Successive electropolymerization of dopamine and electrodeposition of Pd and/or Pt on a graphene oxide (GO) support were used to prepare anode catalysts for low-temperature fuel cells. Transmission electron microscopy images were used to investigate the morphologies and distribution of the prepared catalysts, which showed the metal formed as nanoparticles on the catalysts. The GO surface was favorable for the modification with electropolymerized polydopamine (PDA) and the electrodeposition of metal catalyst nanoparticles using a simple preparation process. The PDA-loaded GO composite was used as a matrix for the dispersion of Pt and Pd nanoparticles. GO could be simultaneously modified by PDA and reduced without using reducing agents. The electrocatalytic performance of the catalysts for the oxidation of selected small molecule fuels (e.g., methanol, ethanol and formic acid) was examined. An outstanding catalytic activity and stability was found for the prepared Pt/Pd/PDA/GO composite, which was attributed to the high active surface area.  相似文献   

15.
We report ab initio computations with the Vienna Ab initio Simulation Package (VASP) aimed at elucidating the adsorption mechanism of graphene-like structures on (111) Pd, Pt, and Ni surfaces. To study the adsorption properties, we simulate an already-formed graphene layer. We present a comparative discussion of the graphene interactions with the three metals, focusing on the very particular adsorption of graphene over Pd.  相似文献   

16.
Biofunctionalization and manipulating of graphene nanosheets (GNS) are important for biomedical research and application. Chitosan (CS) modified graphene nanosheets have been successfully prepared under microwave irradiation in N,N-dimethylformamide medium, which involved the reaction between the carboxyl groups of graphene oxide nanosheets (GONS) and the amido groups of chitosan followed by the reduction of graphene oxide nanosheets into graphene nanosheets using hydrazine hydrate. The as-prepared graphene nanosheets-chitosan (GNS-CS) nanocomposites have been characterized by FTIR, TEM, FESEM, XRD and TG. The results showed that chitosan was covalently grafted onto the surface of graphene nanosheets via amido bonds. Solubility measurements indicated that the resultant nanocomposites dispersed well in aqueous acetic acid. Especially, the electrorheological (ER) properties of the GNS-CS nanocomposites have been investigated. It is believed that this new nanocomposites may be promising for biomedical applications.  相似文献   

17.
Nitrogen doped graphene was synthesized from graphite oxide and urea by thermal solid-state reaction. The samples were characterized by transmission electron microscopy, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectra, element analysis, and electrical conductivity measurement. The results reveal that there is a gradual thermal transformation of nitrogen bonding configurations from amide form nitrogen to pyrrolic, then to pyridinic, and finally to “graphitic” nitrogen in graphene sheets with increasing annealing temperature from 200 to 700 °C. The products prepared at 600 °C and 700 °C show that the quantity of nitrogen incorporated into graphene lattice is ∼10 at.% with simultaneous reduction of graphite oxide. Oxygen-containing functional groups in graphite oxide are responsible for the doping reaction to produce nitrogen doped graphene.  相似文献   

18.
The structural, electronic, and adsorption properties of Li/Na ions on graphene decorated by epoxy groups are investigated by first-principles calculations based on density functional theory.Our results show that the concentration of epoxy groups remarkably affects the structural and electronic properties of graphene.The bandgaps change monotonically from0.16 eV to 3.35 eV when the O coverage increases from 12.5% to 50%(O/C ratio).Furthermore, the highest lithiation potential of 2.714 V is obtained for the case of graphene oxide(GO) with 37.5 % O coverage, while the highest sodiation potential is 1.503 V for GO with 12.5% O coverage.This clearly demonstrates that the concentration of epoxy groups has different effects on Li and Na storage in GO.Our results provide a new insight into enhancing the Li and Na storage by tuning the concentration of epoxy groups on GO.  相似文献   

19.
Hydrazine is often used to reduce graphene oxide (GO) to produce graphene. Recent observations suggested that when hydrazine is used to reduce GO, the resulting reduced graphene actually contains certain amounts of nitrogen dopants, which may influence the properties of the obtained material, and in some cases may be deployed for beneficial advantage. In this work, we prepared graphene oxide by the chemical oxidation method, then used either hydrazine or sodium borohydride (as a control) to reduce the graphene oxide to graphene and to explore the nature of the nitrogen functionalities introduced by hydrazine reduction. Pt nanoparticles were then deposited on the nitrogen doped (hydrazine-reduced) and undoped (control) graphene substrates, and the morphology, structure, and electrocatalytic methanol oxidation activity were characterized and evaluated. The results show that the nitrogen functional groups introduced into the graphene by hydrazine reduction greatly improve the electrocatalytic activity of the underlying Pt nanoparticles towards the methanol oxidation reaction.  相似文献   

20.
Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号