首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Stable hydrogen and oxygen isotopes were analysed in water samples from the River Danube and its tributaries during a longitudinal survey performed in August 2005 on Serbian territory. Danube river water data ranged from?80‰ to?66‰ for δ2H, and from?11.2‰ to?9.3‰ for δ18O with δ values increasing downstream. The isotopic signatures of the adjacent tributaries (the Tisza, the Sava and the Velika Morava) sampled at the locations close to their confluence with the Danube (Titel, Ostru?nica and Ljubi?evski most, respectively) just about the time of the campaign were enriched (?67‰ and?63‰ for δ2H, and?9.3‰ and?8.9‰ for δ18O) with respect to the Danube water because of their catchment effects. Hydrogen and oxygen stable isotope values were used in combination with measured physico-chemical and biological parameters to trace hydrological and transport processes in these river systems. The mixing relationships between the Danube main stream and its tributaries were estimated using the mass balance for isotopic composition and electrical conductivity as conservative parameters. Evidence of an incomplete mixing process at the ?enta location, 8 km below the confluence of the Tisza river, with its participation of 88% was shown by its oxygen-18 content. The correlations between river water isotope composition and physico-chemical and biological parameters are discussed.  相似文献   

2.
The stable isotope composition of hydrogen (delta(2)H) and oxygen (delta(18)O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line delta(2)H=7.8 (+/-0.2) delta(18)O+7.3(+/-1.6) (r(2)=0.98, n=60, sigma=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean delta(2)H and delta(18)O values of precipitation were-65+/-27 per thousand and-9.4+/-3.4 per thousand, respectively. Good correlation between delta(18)O values (r approximately >0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from-94 to-60 per thousand for delta(2)H and from-11.0 to approximately 5.7 per thousand for delta(18)O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

3.
This paper describes the results of isotopic analyses of (i) hydrogen and oxygen in water (delta DH2O and delta18OH2O ) and (ii) sulphur and oxygen in sulphates (delta34Ssulphate and delta18Osulphate) from atmospheric precipitation collected within a one-year period between 25 May 2004 and 25 May 2005 in Wroc?aw (SW Poland). The resulting equation of Local Meteoric Water Line for Wroc?aw is delta D=6.373xdelta18O-0.047, (r2=0.97, n=32). The delta34Ssulphate varies from 1.1 to 4.2 per thousand (with an average of 2.5 per thousand), delta18Osulphate varies from 9.0 to 16.7 per thousand (with an average of 13.8 per thousand) and delta18OH2O varies from-0.8 to-16.3 per thousand (with an average of-8.2 per thousand). The above results indicate two main sources of sulphates in Wroc?aw precipitation: (i) low-temperature secondary sulphates forming in situ in Wroc?aw from the atmospheric SO2 as well as precipitation water (heterogeneous and homogeneous pathways oxidation) and (ii) high-temperature primary sulphates forming in rapid high-temperature hydratation of SO3- in an immediate proximity of industrial chimneys. We hypothesise that the secondary low-temperature type of sulphates is probably formed from the local sulphur and oxygen reservoirs, whereas the primary high-temperature type is allochthonous and it is probably transported from industrial areas located outside of Wroc?aw.  相似文献   

4.
Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (delta18O: -9.1 per thousand to -9.0 per thousand, conductivity: 217-410 microS/cm) was distinctly different from groundwater (delta18O: -7.1 per thousand to -6.6 per thousand, conductivity: 600-900 microS/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (<30 cm), whereas trees further from the river relied on deeper ground water (>1 m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.  相似文献   

5.
A slice of black shale rock cut by various metal sulphide veins of different generations from the Kupferschiefer deposits of Lubin, Poland was subjected to bombardment in a Laser Microprobe Combustion Reactor to produce SO2 for S-isotope analyses. The delta34S values ranged from-22 to-29 per thousand consistent with previous findings using conventional IRMS and attributable to primary generation of H2S by bacterial sulphate reduction. Systematic trends in delta34S values of a few per mil over distances of the order of mm attest to low temperatures of mineralization with accompanying change in the isotope composition of the fluids due to kinetic or equilibrium isotope fractionation.  相似文献   

6.
One of the most important tributaries of the Danube River in Romania, the Olt River, was characterized in its middle catchment in terms of the isotopic composition using continuous flow–isotope ratio mass spectrometry (CF–IRMS). Throughout a period of 10 months, from November 2010 to August 2011, water samples from the Olt River and its more important tributaries were collected in order to investigate the seasonal and spatial isotope patterns of the basin waters. The results revealed a significant difference between the Olt River and its tributaries, by the fact that the Olt River waters show smaller seasonal variations in the stable isotopic composition and are more depleted in 18O and 2H. The waters present an overall enrichment in heavy isotopes during the warm seasons.  相似文献   

7.
We present the results of an isotope (2H and 18O) and hydrogeochemical study in order to constrain the origin, recharge, and evolution of the surface and groundwater in the arid Andean realm of the Elqui watershed. The results of 2H and18O analyses of water samples obtained during our summer and winter campaigns indicate a generally meteoric origin of the river and spring waters of the watershed. The isotope signature of water of the Elqui river and its tributaries as well as that of groundwater in the coastal region fits the 2H-18O relation of delta2H =7.61delta18O+6.1. A relatively fast discharge and a quasi-closed catchment area can be asserted for water along the river flow path. The tributaries from the more arid coastal area, north of the Elqui river, differ in their isotopic signature due to evaporation and hydrochemically due to interactions with the strongly altered and fractured volcanic rocks of the basement. In the Andean zone, the18O-enriched hydrothermal spring of Ba?os del Toro exhibits the influence of water-rock interaction processes. The chemistry of the river water changes from sulphate- to chloride-rich along the river course from the high Andean mountains to the coast. The sulphate-rich character of these Andean waters reflects their passage through sulphide-rich rock massifs that were subjected to strong oxidation processes in the near superficial environment. This sulphate signature is enforced by past and present mining of precious metal epithermal deposits (e.g. those of El Indio-Tambo Au-Cu-As district), in which mineralised zones were developed during a series of Miocene magmatic-hydrothermal episodes in the Andean realm. Owing to the proximity of the lower Elqui river waters and its tributaries to the Pacific coast, the chloride character may be induced by agricultural and marine (sea spray, fog) sources. Generally, the main source of the Elqui river water is mainly attributed to surface runoff and less to contributions from the basement fractured aquifer.  相似文献   

8.
The carbon isotope composition (delta(13)C, per thousand) and discrimination (Delta, per thousand) of old grown North American Pinus ponderosa Dougl. Ex P. et C. Laws. and European Pinus sylvestris L. were determined using trees grown under almost identical growing conditions in a mixed stand in Bralitz, Northeast Germany. Single-tree delta(13)C analyses of tree-ring cellulose of both species were carried out at a yearly resolution for the period 1901-2001 and the results compared with growth (basal area increment). Annual mean delta(13)C values for P. ponderosa ranged from-21.6 per thousand to-25.2 per thousand and for P. sylvestris from-21.4 per thousand to-24.4 per thousand. Accordingly, (13)C discrimination (Delta) showed higher values for P. ponderosa throughout the investigation period. Five characteristic periods of Delta were identified for both the tree species, reflecting positive and negative influences of environmental factors. Good growing conditions such as after-thinning events had a positive effect on Delta, reflecting higher values, while poor conditions like aridity and air pollution had a negative influence, reflecting lower values. The dynamics of Delta were likewise reflected in the growth (basal area increment, BAI). Higher (13)C discrimination values of P. ponderosa led to higher BAIs of P. ponderosa in comparison with P. sylvestris. Correlation function analyses confirmed that P. sylvestris was more dependent on precipitation than P. ponderosa, which showed a closer relationship with temperature. The results confirm that under predominantly dry growing conditions, P. ponderosa showed better growth performance than P. sylvestris, indicating better common intrinsic water-use efficiency and, therefore, higher rates of net photosynthesis at a given transpiration. In view of the prospect of climate change, the results are very significant for assessing both trees' physiological properties and, hence, their potential for coping with future growing conditions.  相似文献   

9.
In the Mansfeld region (Central Germany) copper mining contributed to an enormous pollution of the environment. Metal- and sulphate-bearing sediments and leachates emerge from the former copper smelters and mining waste heaps, spread along local rivers and finally reach the Saale river. A sulphur isotope study on water and stream sediments was performed along the River "B?se Sieben" and from its tributaries to determine the different sulphur sources. Four major sulphur sources exist in the area: metal sulphide mineralisations (Kupferschiefer), met alliferous sulphidic flue dust, slag, and anhydrite and gypsum of Permian and Triassic age. We obtained delta34S(SO4)-values in water samples varying from +4 per thousand to -18 per thousand CDT, clearly reflecting the input of sulphate from different sources. Sulphate from the oxidation of sulphidic mining residues is restricted to the mining area and cannot be traced for more than 5 km downstream. The major source for sulphate is the dissolution of gypsum and anhydrite. The sulphur isotope composition in dissolved and sedimentary adsorbed sulphate differs only slightly from each other. Microbial dissimilatory sulphate reduction can not be excluded in the shallow sediment layers.  相似文献   

10.
We examined a floodplain area in the middle section of the river Elbe Valley with regard to hydrogeological and hydrological processes using isotopic methods. Over two years, river water and groundwater have been analysed for temporal and spatial chemical and isotopic (delta2H and delta18O) changes. By these methods we assessed the flow dynamics of the river-groundwater infiltration system. At low and mean river stages there is a general hydraulic gradient from the higher areas at the margin of the valley towards the floodplain. During floods river water infiltrates into the adjacent aquifer not primarily through the river banks but first through surface water inflow from north to south, via depressions and gullies from the back of the floodplain. The early stage of river water infiltration is characterized by a sharp decrease in conductivity and in concentrations of SO4(2-) and Cl- in the hydraulically connected shallow aquifer. delta2H and delta18O values show a similar tendency. We observed a significant minimum in stable isotope ratios during the flood in March 1999. Using a simple mixing equation it was calculated that the groundwater in the upper, shallow aquifer consists of around 70% river water in the transition zone (well 13) during flooding.  相似文献   

11.
The sudden collapse of Atlantic cod (Gadus morhua) may relate to ocean climate, or regime shifts as demonstrated in production of Pacific salmon. This paper reports the results of stable oxygen isotope ratio analyses (18O/16O or delta18OA) from 91 otoliths of cod over a period of about 20 years. Seasonal delta18OA variations of individual otoliths started at an initial value of about -0.5 to 0 per thousand VPDB, and then reached a stable level in the range of +2.5 to +3.5 per thousand VPDB after 4-5 years. The initial low values correspond to the natal sources of mature cod, while the higher delta18OA values represent the water conditions before the cod was caught. This pattern of delta18OA variation was observed over the life history of all cod examined. Furthermore, the calculated isotopic temperatures agreed with those obtained from summer bottom trawl survey, indicating that delta18OA of otoliths could be used as a thermometer in determining the ambient seawater temperature where the cod lived. Comparison of long-term delta18OA records and biological and meteorological observations suggested that decadal-scale ecosystem changes did occur in the late 1970s and early 1990s in Atlantic Canada, comparable to regime shifts occurred in the North Pacific.  相似文献   

12.
Calcrete nodules and concretions in unusually large amounts are embedded in the Quaternary clay-rich (Vertisol-type) 'red clay' soil-sedimentary complex at the pediment of the Mátra Mountains (Hungary). Stable isotope signatures were studied in nodules and septarian concretions, uncommon due to their several millimeter sized calcite crystals filling voids and fractures, to reveal their origin. The isotope composition of calcrete covers a wide range: delta18O=-5.9 to-10.4 per thousand and delta13C=-8.9 to-12.3 per thousand (vs. V-PDB). Isotope compositions support pedogenic (sensu stricto) and/or shallow groundwater origin for the calcrete nodules and concretions, the role of 'evolved' (isotopically modified) groundwaters in the formation of secondary carbonate was possibly subordinate. Late-stage, large, Mn-rich euhedral calcite crystals in concretions have the lowest delta13C values, which are interpreted as a result of larger contribution of isotopically light organic carbon due to decomposition of organic matter under reducing conditions. Precipitation of late calcite crystals in concretions occurred in early diagenetic environment after shallow burial of the 'red clay' paleovertisol.  相似文献   

13.
The stable isotopic analyses of molecular oxygen dissolved in water (delta18O(DO)) and dissolved inorganic carbon (delta13C(DIC)), supplemented with basic chemical measurements, have been carried out on a diurnal basis to better understand the dynamics of photosynthesis and respiration in freshwater systems. Our observations have been carried out in a lowland dam reservoir, the Sulejow Lake (central Poland), during the summer cyanobacterial bloom. All data obtained, isotopic, hydrochemical, and biological, show a high mutual consistency. Namely, the lowest delta18O(DO) values, obtained at 10:00 and 14:00 (16.0 and 15.5 per thousand, respectively), correspond to the highest amount of cyanobacterial cells observed (66 and 63 mg dm(-3), respectively), whereas the minimum delta13C(DIC) (-10.6 per thousand) obtained at 22:00 corresponds to the maximum content of organic matter (110 mg dm(-3)). This evidence suggests that isotopic assays of delta18O(DO) and delta13C(DIC) are a reliable tool for the quantitative study of biochemical processes in freshwater systems.  相似文献   

14.
Surface water and deep and shallow groundwater samples were taken from selected parts of the Grand-Duchy of Luxembourg to determine the isotopic composition of nitrate and sulfate, in order to identify sources and/or processes affecting these solutes. Deep groundwater had sulfate concentrations between 20 and 40 mg/L, delta34S(sulfate) values between -3.0 and -20.0 per thousand, and delta18O(sulfate) values between +1.5 and +5.0 per thousand; nitrate was characterized by concentrations varying between < 0.5 and 10 mg/L, delta15N(nitrate) values of approximately -0.5 per thousand, and delta18O(nitrate) values approximately +3.0 per thousand. In the shallow groundwater, sulfate concentrations ranged from 25 to 30 mg/L, delta34S(sulfate) values from -20.0 to +4.5 per thousand, and delta18O(sulfate) values from approximately +0.5 to +4.5 per thousand; nitrate concentrations varied between approximately 10 and 75 mg/L, delta15N(nitrate) values between +2.5 and +10.0 per thousand, and delta18O(nitrate) values between +1.0 and +3.0 per thousand. In surface water, sulfate concentrations ranged from 10 to 210 mg/L, delta34S(sulfate) values varied between -9.3 and +10.9 per thousand, and delta18O(sulfate) values between +3.0 and +10.7 per thousand were observed. Nitrate concentrations ranged from 10 to 40 mg/L, delta15N(nitrate) values from +6.5 to +12.0 per thousand, and delta18O(nitrate) values from -0.4 to +4.0 per thousand. Based on these data, three sulfate sources were identified controlling the riverine sulfate load. These are soil sulfate, dissolution of evaporites, and oxidation of reduced S minerals in the bedrock. Both groundwater types were predominantly influenced by sulfate from the two latter lithogenic S sources. The deep groundwater and a couple shallow groundwater samples had nitrate derived mainly from soil nitrification. All other sampling sites were influenced by nitrate originating from sewage and/or manure. A decrease in nitrate concentration observed along one of the rivers was attributed to denitrification. It appears that sulfate within Luxembourg's aquatic ecosystem is mainly of lithogenic origin, whereas nitrate is often derived from anthropogenic activities.  相似文献   

15.
Current methods for stable oxygen isotopic (delta (18)O) analysis of soil water rely on separation of water from the soil matrix before analysis. These separation procedures are not only time consuming and require relatively large samples of soil, but also have been shown to introduce a large potential source of error. Current research at Queen's University Belfast is focused on using direct equilibration of CO(2) with the pore water to eliminate this extraction step using the automated Multiprep system and a Micromass Prism III isotope ratio mass spectrometer (IRMS). The findings of this research indicate the method is less time consuming, more reliable, and reproducible to within accepted limits (+/-0.1% per thousand delta (18)O). In this study the direct equilibration method is used to analyse delta (18)O tracer profiles in the unsaturated zone of field soils, concurrently with chloride tracer profiles, which can be used to assess infiltration rates and mechanisms through the unsaturated zone. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Characteristics of suspended matter in the River Sava watershed, Slovenia   总被引:2,自引:0,他引:2  
A combination of C/N ratios, delta(13)C and delta(15)N values in suspended matter was used to examine the seasonal (late summer 2004 and spring 2005) relationship with hydrological characteristics of the River Sava watershed in Slovenia. The values of C/N ratios range from 1.2 to 19.1, delta(13)C values range from-29.2 to-23.0 per thousand and delta(15)N values from 0.5 to 16.7 per thousand and indicate that the samples are a mixture of two end members: modern soils and plant litter. A simple mixing model was used to indicate that soil organic carbon prevails over plant litter and contributes more than 50% of suspended material. The calculated annual particulate organic carbon flux is estimated as 5.2x10(10) g C/year, the annual particulate nitrogen flux 8.5x10(9) g N/year and the total suspended solid flux is estimated to be 1.3x10(12) g/year. Anthropogenic impact was detected only in a tributary stream of the River Sava, which is located in an agriculture-industrial area and is reflected in higher delta(15)N values in suspended matter and high nitrate concentrations in the late summer season.  相似文献   

17.
A modified technique for the conversion of sulphates and sulphides to SO2 with the mixture of V2O5-SiO2 for sulphur isotopic analyses is described. This technique is more suitable for routine analysis of large number of samples. Modification of the reaction vessel and using manifold inlet system allows to analyse up to 24 samples every day. The modified technique assures the complete yield of SO2, consistent oxygen isotope composition of the SO2 gas and reproducibility of delta34S measurements being within 0.10 per thousand. It is observed, however, oxygen in SO2 produced from sulphides differs in delta18O with respect to that produced from sulphates.  相似文献   

18.
Stable chlorine isotope compositions (delta(37)Cl, per-mil: per thousand, vs. a standard sample of sea water) of Kusatsu-bandaiko hot water samples, taken regularly in the years between 1974 and 1995 in the Kusatsu-Shirane volcanic region, Japan, were measured mass-spectrometrically. The results show that the delta(37)Cl values of the waters taken before 1984 were at around-0.12 per thousand, whereas those after 1984 were at around+0.18 per thousand. The delta(37)Cl values are thus distinct across 1984, which is consistent with the classification by the Cl to S molar ratio (Cl/S): the higher the Cl/S ratio, the larger the delta(37)Cl value. The delta(37)Cl value increased as much as 0.30 per thousand during 5 years between 1980 and 1984. This isotopic enrichment is likely correlated with increasing Cl/S ratios, suggesting that the heavier isotope ((37)Cl) may have preferentially increased in the original Cl source of the hot spring across 1984 when volcanic activity likely increased at Mt Kusatsu-Shirane.  相似文献   

19.
Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The delta18O vs. delta2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The delta18O values of the drip water show little variability (<0.6 per thousand), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site. The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water delta18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the delta18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall delta18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.dagger.  相似文献   

20.
Abstract

The stable isotope composition of hydrogen (δ2H) and oxygen (δ18O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line δ2H=7.8 (±0.2) δ18O+7.3(±1.6) (r 2=0.98, n=60, σ=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean δ2H and δ18O values of precipitation were?65±27 ‰ and?9.4±3.4 ‰, respectively. Good correlation between δ18O values (r>rsim0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from?94 to?60 ‰ for δ2H and from?11.0 to ~5.7 ‰ for δ18O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号