首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte‐free isoelectric focusing on paper‐based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry. This paper‐based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost‐effective protein sample clean‐up method for target protein analysis with mass spectrometry.  相似文献   

2.
Liang Y  Zhu G  Wang T  Zhang X  Liang Z  Zhang L  Zhang Y 《Electrophoresis》2011,32(20):2911-2914
A new method was developed to prepare monolithic immobilized pH gradient (M-IPG) columns in UV-transparent fused-silica capillaries by the 5-min photopolymerization of acrylamide and N,N'-methylenebisacrylamide, followed by the 20-min photografting of the focused ampholine-derived glycidylmethacrylate monomer on the monolithic matrix, by which the preparation time was reduced, and the stability of the formed pH gradient was improved, compared with our previous methods. Using the prepared M-IPG column, the baseline separation of proteins was achieved according to their pIs. Without carrier ampholytes added in the running buffer, the separated components could be detected with high sensitivity by UV at low wavelength.  相似文献   

3.
Xu Z  Okabe N  Arai A  Hirokawa T 《Electrophoresis》2010,31(21):3558-3565
This paper reports the protein analysis by using microchip IEF carried on an automated chip system. We herein focused on two important topics of microchip IEF, the pH gradient and cathodic drift. The computer simulation clarified that the EOF could delay the establishment of pH gradient and move the carrier ampholytes (CAs) to cathode, which probably caused a cathodic drift to happen. After focusing, the peak positions of components in a calibration kit with broad pI were plotted against their pI values to know the actual pH gradient in a microchannel varying time. It was found that the formed pH gradient was stable, not decayed after readily steady state, and migrated to cathode at a rate of 10.0 μm/s that determined by the experimental conditions such as chip material, internal surface coating and field strength. The theoretical pH gradient was parallel with the actual pH gradient, which was demonstrated in two types of microchip with different channel lengths. No compression of pH gradient was observed when 2% w/v hydroxypropyl methyl cellulose was added in sample and electrolytes. The effect of CAs concentration on current and cathodic drift was also explored. With the current automatic chip system, the calculated peak capacity was 23–48, and the minimal pI difference was 0.20–0.42 for the used single channel microchip with the effective length of 40.5 mm. The LOD for the analysis of CA‐I and CA‐II was around 0.32 μg/mL by using normal imaged UV detection, the detected amount is ca. 0.07 ng.  相似文献   

4.
Free‐flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home‐made carrier ampholyte‐free FFIEF system was constructed via orientated migration of H+ and OH? provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte‐free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI‐TOF‐MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris‐acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min.  相似文献   

5.
We report on capillary isoelectric focusing-mass spectrometry (CIEF-MS) of complex peptide mixtures in the absence of carrier ampholytes. Furthermore, the use of low concentrations of carrier ampholytes as mere spacers is investigated. Carrier ampholytes are complex mixtures of amphoteric compounds with high buffering capacity. Since all peptides are amphoteric compounds by themselves, the use of carrier ampholytes may be superfluous to establish a stable pH gradient in CIEF analysis of protein digests. Our research showed that when carrier ampholytes are omitted, the analyte ions are not focused at their isoelectric point. The analytes are charged, leading to electrophoretic mobility uncharacteristic for CIEF. The method was tested for a five-protein-mixture at 0.02 mg/mL per protein and 0.05 mg/mL per protein. At the lower concentration, the analytes were stacked during the focusing process in only a limited length of the capillary. Therefore, the higher concentration led to better separation efficiency. It was found that at low concentration (0.20%) the carrier ampholytes could work as spacers. Though it led to sensitivity losses of 15-45%, this was compensated by the higher separation efficiencies seen. The method was evaluated with an eight-protein-mixture, of which all could be identified after performing MS/MS.  相似文献   

6.
The use of quasi-isoelectric buffers consisting of narrow pH cuts of carrier ampholytes (NC) has been investigated to limit protein adsorption on capillary walls during capillary zone electrophoresis experiments. To quantify protein adsorption on the silica surface, a method derived from that of Towns and Regnier has been developed. alpha-Lactalbumin (14 kDa, pI 4.8) and alpha-chymotrypsinogen A (25 kDa, pI 9.2) have been used as model proteins. Acidic narrow pH cuts of carrier ampholytes (NC, pH 3.0) obtained from fractionation of Serva 4-9 carrier ampholytes were used as BGE in bare-silica capillaries, and allowed to decrease significantly protein adsorption, as compared to experiments performed with classical formate buffer. The use of NC as BGE appeared to be as efficient as the use of polydimethylacrylamide coating to prevent protein adsorption. This increase of protein recovery when using NC was attributed to the interaction of carrier ampholytes with the silica surface, leading to a shielding of the capillary wall.  相似文献   

7.
Capillary isoelectric focusing hyphenated with mass spectrometry detection, following the sequential injection of the carrier ampholytes and the sample zone, is highly efficient for the characterization of proteins. The main advantage of the sequential injection protocol is that ampholytes, with pH ranges, which are not supposed to cover the isoelectric points of the sample components, can be used for separation. The method then allows online mass spectrometry detection of separated analytes either in the absence (substances that have left the pH gradient) or in the presence of low‐level ampholytes (substances that are migrating within the pH gradient). The appearance of the substances within, or outside the pH gradient depends on, e.g., the composition of the ampholytes (broad or narrow pH range) or on the composition of electrolyte solutions. The experiments performed in coated capillaries (with polyvinyl alcohol or with polyacrylamide) show that the amount and the injection length of the ampholytes influence the length of the pH gradient formed in the capillary.  相似文献   

8.
The impact of initial sample distribution on separation and focusing of analytes in a pH 3–11 gradient formed by 101 biprotic carrier ampholytes under concomitant electroosmotic displacement was studied by dynamic high-resolution computer simulation. Data obtained with application of the analytes mixed with the carrier ampholytes (as is customarily done), as a short zone within the initial carrier ampholyte zone, sandwiched between zones of carrier ampholytes, or introduced before or after the initial carrier ampholyte zone were compared. With sampling as a short zone within or adjacent to the carrier ampholytes, separation and focusing of analytes is shown to proceed as a cationic, anionic, or mixed process and separation of the analytes is predicted to be much faster than the separation of the carrier components. Thus, after the initial separation, analytes continue to separate and eventually reach their focusing locations. This is different to the double-peak approach to equilibrium that takes place when analytes and carrier ampholytes are applied as a homogenous mixture. Simulation data reveal that sample application between two zones of carrier ampholytes results in the formation of a pH gradient disturbance as the concentration of the carrier ampholytes within the fluid element initially occupied by the sample will be lower compared to the other parts of the gradient. As a consequence thereof, the properties of this region are sample matrix dependent, the pH gradient is flatter, and the region is likely to represent a conductance gap (hot spot). Simulation data suggest that sample placed at the anodic side or at the anodic end of the initial carrier ampholyte zone are the favorable configurations for capillary isoelectric focusing with electroosmotic zone mobilization.  相似文献   

9.
A horizontal two-dimensional electrophoresis method with immobilized pH gradient isoelectric focusing supplemented with carrier ampholytes in the first dimension was applied to cerebrospinal fluid (CSF) proteins. About 300 protein spots could be detected on the silver-stained two-dimensional maps of CSF samples. This high-resolution method is a tool worthy of consideration for the research of CSF proteins and disease-specific changes in different neurological disorders.  相似文献   

10.
Efficient separation method is a crucial part of the process in which components of highly complex biological sample are identified and characterized. Based on the principles of recently newly established electrophoretic method called divergent flow IEF (DF IEF), we have tested the DF IEF instrument which is able to operate without the use of background carrier ampholytes. We have verified that during separation and focusing of sample consisting of high numbers of proteins (yeast lysate and wheat flour extract), the pH gradient of preparative DF IEF can be created by autofocusing of the sample components themselves without any addition of carrier ampholytes. In DF IEF, the proteins are separated, desalted and concentrated in one step. The fractions of yeast lysate sample, collected at the DF IEF output and subjected to gel IEF, contained the zones of proteins gradually covering the pI values from 3.7 to 8.5. In our experimental arrangement, the highest number of proteins has been found in fractions with pI values around 5.3 as detected by polyacrylamide gel IEF with CBB staining. During DF IEF, the selected protein bands have been concentrated up to 16.8‐fold.  相似文献   

11.
Erythrocyte acid phosphatase (EAP), esterase D (ESD) and phosphoglucomutase (PGM) phenotypes among the erythrocyte enzyme types of blood groups are surveyed and a modified cellulose acetate membrane isoelectric focusing (CAM-IEF) method for their exploration is described. The phenotyping procedures are usually classified as either equilibrium or non-equilibrium IEF. Equilibrium IEF, which is based on differences in pI values, includes three methods: (i) a narrow pH range of carrier ampholytes, (ii) a relatively narrow pH range of carrier ampholytes containing chemical separators and (iii) immobilized pH gradient gels. Among the three methods, immobilized pH gradients provides a better resolution of isozymes. Conversely, the disadvantages of immobilized pH gradients include longer focusing times and complex gel preparations. Moreover, immobilized pH gradients are unsuitable for stain analysis because of the insensitivity of PGM1 detection. A hybrid IEF system and a commercial immobilized pH gradient dry plate have overcome these problems. However, EAP typing is extremely expensive and ESD typing is not well distinguished by hybrid IEF. As each method has both merits and demerits, the most suitable technique should be selected based on the kind of erythrocyte enzyme types and sample conditions. On the other hand, non-equilibrium IEF is a rapid method because isozymes are detected on the basis of their charge differences under non-equilibrium conditions. Moreover, the appropriate addition separators increases the charge difference and provides a good resolution within a shorter time. Addition of more separators produces a narrow pH range in the gel and takes a substantially longer time to reach the optimum pH range for charge difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Electrokinetic processes that lead to pH gradient instabilities in carrier ampholyte-based IEF are reviewed. In addition to electroosmosis, there are four of electrophoretic nature, namely (i) the stabilizing phase with the plateau phenomenon, (ii) the gradual isotachophoretic loss of carrier ampholytes at the two column ends in presence of electrode solutions, (iii) the inequality of the mobilities of positively and negatively charged species of ampholytes, and (iv) the continuous penetration of carbonate from the catholyte into the focusing column. The impact of these factors to cathodic and anodic drifts was analyzed by simulation of carrier ampholyte-based focusing in closed and open columns. Focusing under realistic conditions within a 5 cm long capillary in which three amphoteric low molecular mass dyes were focused in a pH 3–10 gradient formed by 140 carrier ampholytes was investigated. In open columns, electroosmosis displaces the entire gradient toward the cathode or anode whereas the electrophoretic processes act bidirectionally with a transition around pH 4 (drifts for pI > 4 and pI < 4 typically toward the cathode and anode, respectively). The data illustrate that focused zones of carrier ampholytes have an electrophoretic flux and that dynamic simulation can be effectively used to assess the magnitude of each of the electrokinetic destabilizing factors and the resulting drift for a combination of these effects. Predicted drifts of focused marker dyes are compared to those observed experimentally in a setup with coated capillary and whole column optical imaging.  相似文献   

13.
Li Y  DeVoe DL  Lee CS 《Electrophoresis》2003,24(1-2):193-199
Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10-100 fold in comparison with conventional IEF.  相似文献   

14.
A method for isoelectric focusing of apolipoprotein E in an immobilized pH gradient with added carrier ampholytes has been developed. This method is an improvement over conventional isoelectric focusing of apolipoprotein E with respect to resolution, reproducibility, and simplicity. Since monosialo isoforms are resolved from the normally cofocusing asialo isoforms, unique patterns are obtained for all 6 common apolipoprotein E phenotypes. The method can also be applied to the screening of apolipoprotein A and C isoforms. Delipidated very low density lipoproteins (VLDL) have been used as the source of apolipoprotein E and C. Apolipoprotein A isoforms were focused directly from detergent-treated serum. Immunodetection of apolipoprotein E using capillary transfer was found to be compatible with the described method.  相似文献   

15.
The polymorphism of transferrin (Tf) is currently being studied by isoelectric focusing in carrier ampholyte-generated pH gradients, carrier ampholyte-separator pH gradients or in immobilized pH gradients. Details for obtaining reproducible results with each of the three procedures are outlined. The effectiveness of pretreatment of serum samples with ferrous/ferric salts is discussed, and incubation times optimized after spectrophotometric measurement of the monoferric Tf conversion. Most of the presently available commercial batches of carrier ampholytes do not reliably discriminate the six common TfC subtypes. Resolution of C1, C3 and C2 was achieved by adding 20 to 90 mM HEPES slab gels prepared with various carrier ampholytes. Isoelectric focusing in carrier ampholyte-separator pH gradients cannot be recommended as a standard typing procedure because the results strongly depend on the batch of carrier ampholytes. Tf subtype resolution was only achieved by using isoelectric focusing in immobilized pH gradients with pH slopes reliably reproducible from one experiment to another. Two major shortcomings of immobilized pH gradients are a marked tendency to protein precipitation at the application site and an interaction of proteins with the charged matrix. A protocol for Tf subtyping in immobilized pH gradients is described, based on prior desialylation of samples instead of pretreatment with iron. Sample entry into the matrix was optimized by addition of 5 mM Tris to the gels, and initially running them at low voltage. Recommendations are provided for the application of Tf typing for paternity testing.  相似文献   

16.
This paper describes a microfabricated free-flow electrophoresis device with integrated ion permeable membranes. In order to obtain continuous lanes of separated components an electrical field is applied perpendicular to the sample flow direction. This sample stream is sandwiched between two sheath flow streams, by hydrodynamic focusing. The separation chamber has two open side beds with inserted electrodes to allow ventilation of gas generated during electrolysis. To hydrodynamically isolate the separation compartment from the side electrodes, a photo-polymerizable monomer solution is exposed to UV light through a slit mask for in situ membrane formation. These so-called salt-bridges resist the pressure driven fluid, but allow ion transport to enable electrical connection. In earlier devices the same was achieved by using open side channel arrays. However, only a small fraction of the applied voltage was effectively utilized across the separation chamber during free-flow electrophoresis and free-flow isoelectric focusing. Furthermore, the spreading of the carrier ampholytes into the side channels resulted in a very restricted pH gradient inside the separation chamber. The chip presented here allows at least 10 times more efficient use of the applied potential and a nearly linear pH gradient from pH 3 to 10 during free-flow isoelectric focusing could be established. Furthermore, the application of hydrodynamic focusing in combination with free-flow electrophoresis can be used for guiding the separated components to specific chip outlets. As a demonstration, several standard fluorescent markers were separated and focused by free-flow zone electrophoresis and by free-flow isoelectric focusing employing a transversal voltage of up to 150 V across the separation chamber.  相似文献   

17.
This study reports a new method for establishing an open tubular IPG in a microchip coupled with a whole column image detection (WCID) system for protein separation applications. This method allows a wider range of immobilized pH (2.6–9.5) to be established in a PDMS/quartz channel by controlling the diffusion of acidic and basic polymer solutions into the channel through well‐designed channel dimensions. The developed pH gradient was experimentally validated by performing the separation of a mixture of standard pI markers. It was further validated by the separation of the hemoglobin control AFSC sample. This method is advantageous over existing IPG methods because it has a wider range of pH and maintains the open tubular feature that matches the UV WCID to improve the sensitivity.  相似文献   

18.
19.
Phycoerythrin, ferritin, urease, beta-galactosidase and thyroglobulin, with molecular masses in excess of 200 kDa, adsorb and consequently fail to migrate to, and focus at, their pI positions in electrofocusing in immobilized pH gradients at a total Immobiline concentration of 20 mM while they do focus normally in pH gradients formed by carrier ampholytes. The addition of carrier ampholytes (pH range 3.5-9.5) at concentrations of 0.1 to 5% to the Immobiline-containing gels reduces adsorption (desorbs) some but not all of the 5 proteins at specific Immobiline concentrations. The adsorption is not due to water redistribution and consequent reduction in gel porosity; nor is it due to conductivity minima across the pH gradient. The hypothesis that the presence of oligomeric Immobiline contributed to the protein adsorption is the subject of the accompanying report.  相似文献   

20.
Isoelectric focusing in immobilized pH gradients, supplemented with 0.5% w/v carrier ampholytes was applied for studies of native proteins, especially immunoglobulin G, in cerebrospinal fluid and serum. All 72 paired samples were run on pH 4-10 gels; 25 of them were also examined in pH 7-10 gels. Silver staining and nitrocellulose blotting with amplified immunoperoxidase detection of immunoglobulin G were used for protein visualization. Intrathecally produced immunoglobulin G was resolved into sharply focused, straight and easily identifiable fractions. The pH gradients were stable and the inter-gel reproducibilities of individual immunoglobulin G patterns were good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号