首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
The HPLC enantioseparation of nine atropisomeric 3,3′,5,5′‐tetrasubstituted‐4,4′‐bipyridines was performed in normal and polar organic (PO) phase modes using two immobilized polysaccharide‐based chiral columns, namely, Chiralpak IA and Chiralpak IC. The separation of all racemic analytes, the effect of the chiral selector, and mobile phase (MP) composition on enantioseparation and the enantiomer elution order (EEO) were studied. The beneficial effect of nonstandard solvents, such as tetrahydrofuran (THF), dichloromethane (DCM), and methyl t‐butyl ether on enantioseparation was investigated. All selected 4,4′‐bipyridines were successfully enantioseparated on Chiralpak IA under normal or PO MPs with separation factors from 1.14 to 1.70 and resolutions from 1.3 to 6.5. Two bipyridines were enantioseparated at the multimilligram level on Chiralpak IA. Differently, Chiralpak IC was less versatile toward the considered class of compounds and only five bipyridines out of nine could be efficiently separated. In particular, on these columns, the ternary mixture n‐heptane/THF/DCM (90:5:5) as MP had a positive effect on enantioseparation. An interesting phenomenon of reversal of the EEO depending on the composition of the MP for the 3,3′‐dibromo‐5,5′‐bis‐(E)‐phenylethenyl‐4,4′‐bipyridine along with an exceptional enantioseparation for the 3,3′‐dibromo‐5,5′‐bis‐ferrocenylethynyl‐4,4′‐bipyridine (α = 8.33, Rs = 30.6) were observed on Chiralpak IC.  相似文献   

2.
The separation of the enantiomers of 17 chiral sulfoxides was studied on polysaccharide‐based chiral columns in polar organic mobile phases. Enantiomer elution order (EEO) was the primary objective in this study. Two of the six chiral columns, especially those based on amylose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate) (Lux Cellulose‐4) proved to be most successful in the separation of the enantiomers of the studied sulfoxides. Interesting examples of EEO reversal were observed depending on the chiral selector or the composition of the mobile phase. For instance, the R‐(+) enantiomer of lansoprazole eluted before the S‐(?) enantiomer on Lux Cellulose‐1 in both methanol or ethanol as the mobile phase, while the elution order was opposite in the same eluents on amylose tris(3,5‐dimethylphenylcarbamate) with the S‐(?) enantiomer eluting before the R‐(+) enantiomer. The R‐(+) enantiomer of omeprazole eluted first on Lux Amylose‐2 in methanol but it was second when acetonitrile was used as the mobile phase with the same chiral selector. Several other examples of reversal in EEO were observed in this study. An interesting example of the separation of four stereoisomers of phenaminophos sulfoxide containing chiral sulfur and phosphor atoms is also reported here.  相似文献   

3.
Two chloromethyl phenylcarbamate‐based chiral stationary phases, one containing an amylose‐type chiral selector (Lux Amylose 2, from Phenomenex) and the other a cellulose‐type one (Lux Cellulose‐4, from Phenomenex), were successfully used for the chiral resolution of three helical chromenes featuring a helicene‐like structure. The compound bearing a phenyl substituent on the helicene‐like structure was enantioresolved at 25°C with Lux Cellulose‐4 and a n‐hexane/1‐propanol 99:1 v/v eluent. With a n‐hexane/2‐propanol 99.8:0.2 v/v mobile phase, the same column (operated at 35°C) provided the separation of the four isomers of the compound having a hexyl residue on the helicene‐like motif and an additional asymmetric carbon. Lux Amylose‐2 was necessary for the enantioseparation of the compound having the sole hexyl residue on the helical scaffold. For the last compound a n‐hexane/2‐propanol 99.8:0.2 v/v eluent was used, and the column temperature was fixed at 5°C. The enantiomer elution order was appraised by using electronic circular dichroism and theoretical calculations. Notably, different thermodynamics of retention and enantioseparation were observed for molecules with pronounced structural similarity, that is, the enantiomer pairs of the compound containing the additional asymmetric carbon atom. Indeed, both entropically and enthalpically controlled adsorption and separation processes were observed.  相似文献   

4.
Two families of aldols, obtained from the condensation of aromatic aldehydes with cyclohexanone or acetone (ten examples in each group), were analyzed by high‐performance liquid chromatography in normal phase elution mode on three polysaccharide‐based chiral stationary phases of the Lux series, namely, Lux Cellulose‐2, Lux Cellulose‐4 and Lux Amylose‐2, which share the common feature of chlorinated substituents in the chiral selectors. Following simple optimization steps, the enantioseparation of all aldols derived from cyclohexanone was achieved and the highest values of separation factor (α, 1.32 < α < 2.20) and resolution (Rs, 4.5 < Rs <17.2) were observed on Lux Cellulose‐2, with the only exception of the 4‐nitro‐substituted derivative that was better resolved on Lux Cellulose‐4. On the contrary, Lux Amylose‐2 was the best choice for aldols derived from acetone and only specific analytes in this group were resolved on the cellulose‐based supports. A variable‐temperature study of selected compounds allowed us to determine thermodynamic parameters of the enantioseparation process, which was enthalpy‐controlled in all the cases except one.  相似文献   

5.
N‐(2,4‐dinitrophenyl)‐proline and N‐(2,4‐dinitrophenyl)‐serine were enantiomerically resolved on the BSA chiral stationary phase by HPLC in reversed‐phase mode. Effects of chromatographic conditions on enantioseparation and elution order have been investigated in detail. For these two samples, reversal of enantiomer elution order was observed by changing buffer pH, the content of acetonitrile, or alcohol modifiers in mobile phase, which is firstly reported in the BSA chiral stationary phase studies. More interestingly, combined effect between buffer pH and the content of acetonitrile was also observed. In addition, coelution range of enantiomers varied along with the content of acetonitrile in mobile phase.  相似文献   

6.
The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide‐based chiral columns in high‐performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination.  相似文献   

7.
The separation of enantiomers of five chiral dihydropyridine derivatives was studied on five different polysaccharide‐based chiral HPLC columns with various normal‐phase (NP), polar organic, and reversed‐phase eluents. Along with the successful separation of analyte enantiomers, the emphasis of this study was on enantiomer elution order (EEO) with various columns and mobile phase composition. The interesting phenomenon of reversal of EEO, recently reported in the case of amlodipine (AML) depending on the concentration of formic acid in acetonitrile, was also confirmed with NP eluents. Under RP conditions at relatively low water content, the EEO of AML could also be reverted by varying the concentration of formic acid in the mobile phase. However, at higher water content the same parameter did not affect the EEO, but only induced gradual decrease in resolution up to complete co‐elution of enantiomers. Additionally, in organic‐aqueous mobile phases retention factors decreased with increasing water content but only up to 20% (v/v), while above this concentration the expected typical RP behavior was observed. The presence of the commonly used additive diethylamine in the mobile phase seems important for observing a reversal in EEO with increasing concentration of formic acid. The reversal of the EEO was characteristic of AML only and was not observed for any of other dihydropyridines included in this study.  相似文献   

8.
An efficient, simple, validated, analytical and semi‐preparative HPLC method has been developed for direct enantioresolution of (RS)‐Ketorolac (Ket) using monochloro‐methylated derivatives of cellulose and amylose, i.e. cellulose (tris‐3‐chloro‐4‐methylphenylcarbamate) and amylose (tris‐5‐chloro‐2‐methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)‐Ket under normal and reversed‐phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n‐BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose‐based CSP using EtOH, while using 2‐PrOH (15%) and amylose‐based CSP obtained the highest retention. Under reversed‐phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)‐Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The efficient enantioseparation of 26 racemates has been achieved with the perphenylcarbamoylated cyclodextrin clicked chiral stationary phase by screening the optimum composition of mobile phase in high‐performance liquid chromatography. The chromatographic results indicate that both the retention and chiral resolution of racemates are closely related to the polarity of the mobile phases and the structures of analytes. The addition of alcohols can significantly tune the enantioseparation in normal‐phase high‐performance liquid chromatography. The addition of methanol and the ratio of ethanol/methanol or isopropanol/methanol played a key role on the resolution of flavonoids in ternary eluent systems. The chiral separation of flavonoids with pure organic solvent as mobile phase indicates the preferential order for chiral resolution is methanol>ethanol>isopropanol>n‐propanol>acetonitrile.  相似文献   

10.
6‐(4‐Aminophenyl)‐5‐methyl‐4,5‐dihydro‐3(2H)‐pyridazinone is a key synthetic intermediate for cardiotonic agent levosimendan. Very few studies address the use of chiral stationary phases in chromatography for the enantioseparation of this intermediate. This study presents two efficient preparative methods for the isolation of (R)(?)‐6‐(4‐aminophenyl)‐5‐methyl‐4,5‐dihydro‐3(2H)‐pyridazinone in polar organic solvent chromatography and supercritical fluid chromatography using polysaccharide‐based chiral stationary phases and volatile organic mobile phases without additives in isocratic mode. Under optimum conditions, Chiralcel OJ column showed the best performance (α = 1.71, Rs = 5.47) in polar organic solvent chromatography, while Chiralpak AS column exhibited remarkable separations (α = 1.81 and Rs = 6.51) in supercritical fluid chromatography with an opposite enantiomer elution order. Considering the sample solubility, runtime and solvent cost, the preparations were carried out on Chiralcel OJ column and Chiralpak AS column (250 × 20 mm i.d.; 10 µm) in polar organic mode and supercritical fluid chromatography mode with methanol and CO2/methanol as mobile phases, respectively. By utilizing the advantages of chromatographic techniques and polysaccharide‐based chiral stationary phases, this work provides two methods for the fast and economic preparation of (R)(?)‐6‐(4‐aminophenyl)‐5‐methyl‐4,5‐dihydro‐3(2H)‐pyridazinone, which are suitable for the pharmaceutical industry.  相似文献   

11.
RP high‐performance liquid chromatographic methods were developed for the enantioseparation of eleven unusual β2‐homoamino acids. The underivatized analytes were separated on a chiral stationary phase containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The effects of organic (alcoholic) and acidic modifiers, the mobile phase composition and temperature on the separation were investigated. The structures of the substituents in the α‐position of the analytes substantially influenced the retention and resolution. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

12.
The stereoisomers of 1,2,3,4‐tetrahydroisoquinoline amino alcohol analogues and derivatives thereof were separated in normal‐phase mode on chiral stationary phases based on preprepared silica coated with cellulose tris‐(3,5‐dimethylphenyl carbamate), cellulose tris‐(3‐chloro‐4‐methylphenyl carbamate), cellulose tris‐(4‐methylbenzoate) or cellulose tris‐(4‐chloro‐3‐methylphenyl carbamate). On all the investigated chiral columns, the retention and the enantioseparation were influenced by the nature and the concentrations of the mobile phase components and additives, and also the temperature. Experiments were performed in the temperature range 10–50°C. Thermodynamic parameters were calculated from plots of lnα vs 1/T. On these polysaccharide‐based chiral columns, both enthalpy‐driven separations and entropy‐controlled enantioseparations were observed. The latter was advantageous with regard to the shorter retention and greater selectivity at high temperature. The sequence of elution of the stereoisomers was determined in all cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Enantioseparation of 1,1′-bi-2-naphthol (BINOL) was performed on a polysaccharide-based chiral stationary phase, Chiralcel OD-H, under normal-phase mode. The effects of polar modifier in the mobile phase on the retention, enantioseparation and elution order were investigated in detail. Solvent-induced reversal of elution order for BINOL was observed. When linear alcohols were adopted, R-BINOL was always eluted first. S-BINOL was eluted first when 2-propanol was used as a polar modifier. Enantioseparation could not be obtained when sec-butyl alcohol or tert-butyl alcohol was used as a polar modifier. When isoamyl alcohol or cyclohexanol was used as a polar modifier, favorable enantioseparation was obtained as with 1-pentanol or 1-hexanol; also, R-BINOL was the first-eluted enantiomer. It is worth emphasizing that significantly better enantioseparation was obtained when higher alcohols were used as polar modifier of the mobile phase. A nonlinear characteristic for the ln α against 1/T plots was universally observed in this study though the ln k against 1/T plots exhibited a linear feature. Associated with the obtained thermodynamic parameters, some interesting inferences about chiral recognition mechanism were proposed.  相似文献   

14.
The resolving power of a new commercial polysaccharide‐based chiral stationary phase, Sepapak‐4, with cellulose tris(4‐chloro‐3‐methylphenylcarbamate) coated on silica microparticles as chiral selector, was evaluated toward the enantioseparation of ten basic drugs with widely different structures and hydrophobic properties, using ACN as the main component of the mobile phase. A multivariate approach (experimental design) was used to screen the factors (temperature, n‐hexane content, acidic and basic additives) likely to influence enantioresolution. Then, the optimization was performed using a face‐centered central composite design. Complete enantioseparation could be obtained for almost all tested chiral compounds, demonstrating the high chiral discrimination ability of this chiral stationary phase using polar organic mobile phases made up of ACN and containing an acidic additive (TFA or formic acid), 0.1% diethylamine and n‐hexane. These results clearly illustrate the key role of the nature of the acidic additive in the mobile phase.  相似文献   

15.
Retention and enantioseparation behavior of ten 2,2′‐disubstituted or 2,3,2′‐trisubstituted 1,1′‐binaphthyls and 8,3′‐disubstituted 1,2′‐binaphthyls, which are used as catalysts in asymmetric synthesis, was investigated on eight chiral stationary phases (CSPs) based on β‐CD, polysaccharides (tris(3,5‐dimethylphenylcarbamate) cellulose or amylose CSPs) and new synthetic polymers (trans‐1,2‐diamino‐cyclohexane, trans‐1,2‐diphenylethylenediamine and trans‐9,10‐dihydro‐9,10‐ethanoanthracene‐(11S,12S)‐11,12‐dicarboxylic acid CSPs). Normal‐, reversed‐phase and polar‐organic separation modes were employed. The effect of the mobile phase composition was examined. The enantiomeric separation of binaphthyl derivatives, which possess quite similar structures, was possible in different enantioselective environments. The substituents and their positions on the binaphthyl skeleton affect their properties and, as a consequence, the separation system suitable for their enantioseparation. In general, the presence of ionizable groups on the binaphthyl skeleton, substitution with non‐identical groups and a chiral axis in the 1,2′ position had the greatest impact on the enantiomeric discrimination. The 8,3′‐disubstituted 1,2′‐binaphthyl derivatives were the most easily separated compounds in several separation systems. From all the chiral stationary phases tested, cellulose‐based columns were shown to be the most convenient for enantioseparation of the studied analytes. However, the polymeric CSPs with their complementary behavior provided good enantioselective environments for some derivatives that could be hardly separated in any other chromatographic system.  相似文献   

16.
The separation of enantiomers of 10 chiral antimycotic drugs was studied on polysaccharide-based chiral columns with polar organic mobile phases. The emphasis was placed on some interesting examples of enantiomer elution order reversal observed depending on the chemistry of the chiral selector, separation temperature, major component, as well as the minor additive in the mobile phase. In particular, it was found that the elution order of enantiomers of chiral drug terconazole was opposite on cellulose- and amylose-based columns with the same pendant group. The affinity pattern of enantiomers of another chiral drug bifonazole was opposite towards to two amylose-based chiral selectors with different pendant groups. The affinity pattern of terconazole enantiomers also changed on some columns when the alcohol-based mobile phase was replaced with acetonitrile. An interesting effect of the minor acidic (formic acid) additives to the mobile phase on the affinity pattern of terconazole enantiomers was observed on Cellulose-2 and Cellulose-4 columns. In addition, a reversal of elution order of bifonazole enantiomers was observed on Amylose-2 column by variation of a separation temperature.  相似文献   

17.
Herein, the enantiomeric separation of simendan by high‐performance liquid chromatography with ultraviolet detection using polysaccharide‐based chiral stationary phases in polar organic mode is described. Three chiral columns (Chiralpak AD‐H, Chiralcel OD‐H, and Chiralpak AS) were screened using pure methanol and acetonitrile without additives under isocratic conditions. A reversed elution order was observed on the Chiralpak AD‐H column when the methanol content in the mobile phase (methanol–acetonitrile mixtures) was above 10%, whereby levosimendan eluted prior to dextrosimendan. Further, it was found that increasing temperature effectively improved the enantioresolution on the Chiralpak AD‐H column. Van't Hoff analysis was performed to evaluate the contribution of enthalpy and entropy to the chiral discrimination process. The best enantioseparation (α = 3.00, Rs = 12.85) was obtained on the Chiralpak AD‐H column with methanol as the mobile phase at 40°C. Thus, a quantitative method for the resolution of dextrosimendan was established and validated, which could be used as a reference for the determination of dextrosimendan in levosimendan products.  相似文献   

18.

The separation of enantiomers of 10 chiral antimycotic drugs was studied on polysaccharide-based chiral columns with polar organic mobile phases. The emphasis was placed on some interesting examples of enantiomer elution order reversal observed depending on the chemistry of the chiral selector, separation temperature, major component, as well as the minor additive in the mobile phase. In particular, it was found that the elution order of enantiomers of chiral drug terconazole was opposite on cellulose- and amylose-based columns with the same pendant group. The affinity pattern of enantiomers of another chiral drug bifonazole was opposite towards to two amylose-based chiral selectors with different pendant groups. The affinity pattern of terconazole enantiomers also changed on some columns when the alcohol-based mobile phase was replaced with acetonitrile. An interesting effect of the minor acidic (formic acid) additives to the mobile phase on the affinity pattern of terconazole enantiomers was observed on Cellulose-2 and Cellulose-4 columns. In addition, a reversal of elution order of bifonazole enantiomers was observed on Amylose-2 column by variation of a separation temperature.

  相似文献   

19.
A residual silanol group‐protecting chiral stationary phase (CSP) based on optically active (3,3′‐diphenyl‐1,1′‐binaphthyl)‐20‐crown‐6 was successfully applied to the resolution of fluoroquinolone compounds including gemifloxacin mesylate. The chiral recognition ability of the residual silanol group‐protecting CSP was generally greater than that of the residual silanol group‐containing CSP. From these results, it was concluded that the simple protection of the residual silanol groups of the latter CSP with lipophilic n‐octyl groups can improve its chiral recognition ability for the resolution of racemic fluoroquinolone compounds. The chromatographic resolution behaviors were investigated as a function of the content and type of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase and the column temperature. Especially, the addition of ammonium acetate to the mobile phase was found to be a quite effective means of reducing the enantiomer retentions without sacrificing the chiral recognition efficiency of the CSP.  相似文献   

20.
In this paper the elution order reversal of enantiomers of fluorenylmethoxycarbonyl- or FMOC-isoleucine is described depending on the separation temperature and composition of the mobile phase when using the polysaccharide-based chiral column Lux Cellulose-1 in HPLC with normal-phase eluent. Reversal of the enantiomer elution order (EEO) in HPLC depending on the column temperature and content of the polar modifier in the mobile phase has been reported before in the literature. However, EEO reversal by changing the content of acidic modifier in the mobile phase seems to be described for the first time in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号