首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and thermodynamic properties of Zr2AlC at high pressure and high temperature are investigated by first principles density functional theory method. The calculated lattice parameters of Zr2AlC are in good agreement with the available theoretical data. The pressure dependences of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Vickers hardness of Zr2AlC are successfully obtained. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. By using the quasiharmonic Debye model, the thermodynamic properties including the Debye temperature, heat capacity, volume thermal expansion coefficient, and Grüneisen parameter at high pressure and temperature are predicted for the first time.  相似文献   

2.
The physical properties, namely structural, mechanical, and thermodynamic properties, of Pd2Al intermetallic compound were explored through first-principles calculations within the framework of density functional theory. The calculated lattice constants were consistent with the available experimental data. The calculated elastic constants revealed that Pd2Al was mechanically stable. By the predicted elastic constants, several related properties, namely Cauchy pressures, shear anisotropy factors, directional Young's modulus, bulk, shear and Young's moduli, the ratio of K/G, Vickers hardness, sound velocity, and minimum thermal conductivity for Pd2Al were evaluated. According to the calculated results, it was found that Pd2Al possesses a highly anisotropic feature and behaves in a ductile manner with low stiffness. Finally, temperature-dependence of thermodynamic properties, namely Debye temperature and heat capacity, were also evaluated through the quasi-harmonic Debye model.  相似文献   

3.
First-principles calculations are performed to investigate the structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3. The ground-state properties are in agreement with experimental data. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. A linear pressure dependence of the elastic stiffnesses is found. From the theoretical elastic constants, we have computed the elastic wave velocities along [100], [110] and [111] directions. The shear modulus, Young's modulus, Poisson's ratio, Lamé’s coefficients, average sound velocity and Debye temperature are estimated in the framework of the Voigt-Reuss-Hill approximation for ideal polycrystalline BaSnO3 aggregate. Using the sX-LDA for the exchange-correlation potential, the calculated indirect fundamental band gap value is in very good agreement with the measured one. The analysis of the site-projected l-decomposed density of states, charge transfer and charge density shows that the bonding is of ionic nature. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature effect on the lattice constant, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature is calculated.  相似文献   

4.
The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary Al-Li intermetallics, Al3Li, AlLi, Al2Li3, and Al4Li9, are ana-lyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between Al and Li for all the Al-Li intermetallics. In partic-ular, in the Li-rich Al-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of Li. According to the computational single crystal elastic constants, all the four Al-Li intermetallic compounds considered here are mechani-cally stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary Al-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of Al-Li intermetallics decreases in a linear manner.  相似文献   

5.
The structural, elastic properties, electronic structure and hydrogen storage behavior of TiCrMn with a hexagonal C14 structure were investigated by the first-principles calculations within the frame work of DFT. The calculated lattice constants were consistent with the experimental values, and obtained cohesive energy and formation enthalpy showed TiCrMn is of the structural stability. These results also indicated that Mn atoms would optionally substitute on the Cr sites of TiCr2 phase to form the ternary intermetallic TiCrMn. The five independent elastic constants as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν and anisotropy value A) were calculated, and then the ductility and elastic anisotropy of TiCrMn were discussed in details. Furthermore, the electronic DOS and charge density distribution of TiCrMn were also calculated, which revealed the underlying mechanism of structural stability and chemical bonding. Finally, the binding energy of hydrogen in hydride TiCrMn(H3) was investigated, confirming the better hydrogen storage behavior of C14 Laves phase TiCrMn.  相似文献   

6.
The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory. The obtained equation of state is consis-tent with the available experimental data. The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and tem-peratures. The elastic constants are calculated using the finite strain method. A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range. The geo-logically important quantities: Young's modulus, Poisson's ratio, Debye temperature, and crystal anisotropy, are derived from the calculated data.  相似文献   

7.
《Solid State Sciences》2012,14(8):1211-1220
We have performed a first principles study of structural, mechanical, electronic, and optical properties of orthorhombic Sb2S3 and Sb2Se3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, Debye temperature, and hardness have also been estimated in the present work. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valence electrons and the effective optical dielectric constant are calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

8.
Although ZrB12 is a promising advanced material because of the boron cuboctahedron cages, the hardness of ZrB12 remains controversy. Here, we apply first-principles calculations to study the influence of transition metals (4d- and 5d-) on the hardness and thermodynamic properties of ZrB12. The calculated hardness of ZrB12 is 32.9 GPa, which is in good agreement with the previous theoretical result. Importantly, the calculated hardness of Re-doped ZrB12 is up to 40.0 GPa, which is a potential superhard material. The essential reason is that the alloying element of Re enhances the localized hybridization of B B and Zr B atoms, and then forms the strong B B covalent bond and Zr B bond. The result is well demonstrated by the chemical bonding and lattice parameter. Here, our work shows that the alloying elements of Nb, Mo, and Re enhance the thermodynamic properties of ZrB12. The Debye temperature of Re-doped ZrB12 is 1225.2 K, which is larger than that of the parent ZrB12 (1213.5 K).  相似文献   

9.
The B2-type cubic Zr-based compounds are attractive advanced high-temperature materials because of the strong and symmetrical bonds. However, the mechanical and thermodynamic properties of the B2-type cubic Zr-based compounds are not well understood. Here, we use the first-principles calculations to investigate the structural, elastic modulus, ductility, and thermodynamic properties of TMZr (TM = Ru, Mo, Rh, Os, and Re) compounds. Two novel TMZr compounds, MoZr and ReZr, are first predicted by using the phonon dispersion and formation enthalpy, respectively. The results show that the B2-type TMZr compounds not only exhibit high elastic modulus but also show better ductility due to the symmetrical TM-Zr metallic bonds. In particular, the calculated elastic modulus of OsZr is larger than that of the other four TMZr compounds, indicating that the OsZr shows the strongest deformation resistance in five TMZr compounds. The calculated Θ D of RuZr is 328 K, which is larger than that of the other four TMZr compounds. The calculated phonon density of state shows that the high-temperature thermodynamic properties of TMZr derive from the vibration of Zr atom. Therefore, our work predicts that the B2-type OsZr is an attractive high-temperature structural material.  相似文献   

10.
A. Bouhemadou   《Solid State Sciences》2009,11(11):1875-1881
Based on first-principles total energy calculations, we have investigated the systematic trends for structural, electronic and elastic properties of the MAX phases M2GaN depending on the type of M transition metal (M are Ti, V and Cr). The optimized zero pressure geometrical parameters: the two unit cell lengths (a, c), the internal coordinate z and the bulk modulus are calculated. The results for the lattice constants are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site-projected l-decomposed density of states shows that bonding is due to M d-N p and M d-Ga p hybridizations. The elastic constants are calculated using the static finite strain technique. The shear modulus C44, which is directly related to the hardness, reaches its maximum when the valence electron concentration is in the range 10.5–11.0. The isotropic elastic moduli, namely, bulk modulus (B), shear modulus (G), Young's modulus (E) and Poisson's ratio (σ) are calculated in framework of the Voigt–Reuss–Hill approximation for ideal polycrystalline M2GaN aggregates. We estimated the Debye temperature of M2GaN from the average sound velocity. This is the first quantitative theoretical prediction of the electronic structures, and elastic constants and related properties for Ti2GaN, V2GaN and Cr2GaN compounds that require experimental confirmation.  相似文献   

11.
《Solid State Sciences》2012,14(9):1327-1332
The hardness and elastic stiffness of Y3Al5O12 (YAG) were investigated by first-principles calculations and experiments. The mechanical properties including the second-order elastic coefficients, hardness, bulk modulus, Young's modulus and shear modulus were calculated by density functional theory (DFT). The calculated results were in good agreement with the experimental values. The hardness of YAG is mainly attributed to Altet–O bonds. The elastic anisotropy of YAG was discussed. Zener anisotropy parameter of YAG is close to unit and its universal anisotropy index is very close to zero, which indicates the structure of YAG is nearly centrosymmetric. The longitudinal and transverse sound velocities and Debye temperature were also investigated.  相似文献   

12.
The structural, elastic, electronic, and optical properties of cubic spinel MgIn2S4 and CdIn2S4 compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the total energy-strain technique, we have determined the full set of first-order elastic constants Cij and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young’s modulus, and Poisson’s ratio are calculated for polycrystalline XIn2S4 aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap (Г-Г) for MgIn2S4 and an indirect band gap (K-Г) for CdIn2S4. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function ε(ω), the refractive index n(ω), the reflectivity R(ω), and the energy loss function L(ω) were calculated for radiation up to 30 eV.  相似文献   

13.
The structural, mechanical, electronic, and thermodynamic properties of pure W metal under different pressures have been investigated using the first-principles method. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that pure W metal is mechanically stable. Elastic properties such as the bulk modulus (B), shear modulus (G), Young's modulus (E), Poisson's ratio (ν), Cauchy pressure (C′), and anisotropy coefficients (A) are calculated by the Voigt-Reuss-Hill method. The results show that the pressure can improve the strength of pure tungsten and has little effect on the ductility. In addition, the total density of states as a function of pressure is analyzed. Thermodynamic properties such as the Debye temperature, phonon dispersion spectrum, free energy, entropy, enthalpy, and heat capacity are also discussed.  相似文献   

14.
The phase stability and elastic properties of Re? B system were systematically investigated by use of the density functional theory. The formation enthalpies are negative for Re3B, Re7B3, Re2B, ReB, Re2B3, and ReB2, indicating that they are thermodynamically stable. Re7B3, Re2B, ReB, Re2B3, and ReB2 are mechanically stable. Combining the study of enthalpy and pressure relationship with the convex hull, it was found that the ground state phases are Re3B, Re7B3, and ReB2 at zero pressure, in agreement with the experimental observations. At the pressure of 90 GPa, Re3B, and ReB2 are the most stable phases. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

15.
High-throughput first-principle calculations are implemented to study the structural, mechanical, and electronic properties of cubic XTiO3 (X = Ca, Sr, Ba, Pb) ceramics under high pressure. The effects of applied pressure on physical parameters, such as elastic constants, bulk modulus, Young's modulus, shear modulus, ductile-brittle transition, elastic anisotropy, Poisson's ratio, and band gap, are investigated. Results indicate that high pressure improves the resistance to bulk, elastic, and shear deformation for XTiO3 ceramics. Pugh's ratios B/G reveal that CaTiO3 and PbTiO3 ceramics are ductile, but SrTiO3 and BaTiO3 ceramics are brittle under the ground state. The brittle-to-ductile transition pressures are 24.26 GPa for SrTiO3 and 43.23 GPa for BaTiO3. Under high pressure, the strong anisotropy promotes the cross-slip process of screw dislocations, and then enhances the plasticity of XTiO3 ceramics. Meanwhile, XTiO3 (X = Ca, Sr, Ba) is intrinsically an indirect-gap ceramic, but PbTiO3 is a direct-gap ceramic. High pressure increases the band gap of XTiO3 (X = Ca, Sr, Ba) ceramic, but decreases that of PbTiO3 ceramic. This work is helpful for designing and applying XTiO3 ceramics under high pressure.  相似文献   

16.
The present study explores the structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2 using a pseudopotential plane-wave method in the framework of density functional theory within the generalized gradient approximation. The calculated lattice constants and internal coordinates are in very good agreement with the experimental findings. Independent single-crystal elastic constants as well as numerical estimations of the bulk modulus, the shear modulus, Young's modulus, Poisson's ratio, Pugh's indicator of brittle/ductile behaviour and the Debye temperature for the corresponding polycrystalline phase were obtained. The elastic anisotropy of BaIn2P2 was investigated using three different indexes. The calculated electronic band structure and the total and site-projected l-decomposed densities of states reveal that this compound is a direct narrow-band-gap semiconductor. Under the influence of hydrostatic pressure, the direct D–D band gap transforms into an indirect B-D band gap at 4.08 GPa, then into a B–Γ band gap at 10.56 GPa. Optical macroscopic constants, namely, the dielectric function, refractive index, extinction coefficient, reflectivity coefficient, absorption coefficient and energy-loss function, for polarized incident radiation along the [100], [010] and [001] directions were investigated.  相似文献   

17.
First principles calculations are performed to investigate the structural, mechanical, and electronic properties of C2N2(NH). Our calculated lattice parameters are in good agreement with the experimental data and previous theoretical values. Orthorhombic C2N2(NH) phase is found to be mechanically stable at an ambient pressure. Based on the calculated bulk modulus and shear modulus of polycrystalline aggregate, C2N2(NH) can be regarded as a potential candidate of ultra-incompressible and hard material. Furthermore, the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli. Density of states and electronic localization function analysis show that the strong C-N covalent bond in CN4 tetrahedron is the main driving force for the high bulk and shear moduli as well as small Poisson's ratio of C2N2(NH).  相似文献   

18.
The elastic and thermodynamical properties of the III–V semiconductors as BY (Y = N, P, As) are calculated in zincblende and NaCl phases by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb, the Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbour ions and the van der Waals (vdW) interaction. The variations of elastic constants with pressure follow a systematic trend identical to that observed in other compounds of ZnS type structure family and the Born relative stability criteria is valid in boron monopnictides. From the elastic constants the Poisson's ratio ν, the ratio RS/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic wave velocity, average wave velocity and thermodynamical property Debye temperature are calculated. By analyzing the Poisson's ratio ν and the ratio RS/B we conclude that at low pressures the boron monopnictides are brittle in nature in ZnS phase and ductile nature at high pressures in both ZnS and NaCl phases. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of BY compounds.  相似文献   

19.
Cr-Al binary compounds are regarded as the potential high-temperature structural materials. However, the structure and important properties of Cr-Al compounds are not completely unclear. Here, we report on the influence of Cr concentration on the structural, mechanical, and thermodynamic properties of Cr-Al compounds by using the first-principles calculations. Four novel Cr-Al compounds, Cr3Al8 with monoclinic structure (C2/m), Cr3Al5 with hexagonal structure (P63mc), Cr2Al3 with tetragonal structure (I4/mmm), and Cr3Al with cubic structure (Pm-3 m), are predicted. The calculated elastic modulus of Cr-Al compounds gradually increases with increasing Cr concentration. Compared to other Cr-Al compounds, our predicted Cr3Al with cubic structure exhibits a strong deformation resistance and high hardness due to symmetrical Cr Al bonds. However, the Debye temperature of Cr7Al3 is larger than that of other Cr-Al compounds. The calculated phonon density of state shows that the high-temperature thermodynamic properties of Cr-Al compounds are attributed to the vibration of Al atom and Cr Al bond.  相似文献   

20.
利用第一性原理平面波赝势密度泛函理论并结合准谐德拜模型计算了闪锌矿结构ZnTe在高温高压下的弹性及热力学性质.得到了绝对零度、零压强时的晶格常数为0.6095 nm,仅比实验值(0.6103 nm)小0.1%.计算的体弹模量及弹性常数也与实验值符合较好.根据计算的高压下的弹性常数,得到其相变点约为10 GPa,与已知的实验值一致.通过准谐德拜模型,得到了常温下(T=300 K)的德拜温度为249 K,并得到了不同温度、不同压强下的热容.热容随着压强增加而减小,在高温、高压下,热容接近于Dulong-Petit极限.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号