首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.  相似文献   

2.
Pu Wang 《Tetrahedron letters》2007,48(41):7313-7315
Peptide C-terminal semicarbazides are used as the starting materials in transfer active ester condensation technology to prepare HOCt active esters intermediates, which react with other peptide segments or reagents to afford long chain peptides, branch peptides and peptide C-terminal derivatives. The semicarbazido derivatives afford reliable results and avoid side reactions efficiently.  相似文献   

3.
A new approach is described for the general Fmoc-based solid-phase synthesis of C-terminal peptide (thio)esters. One hydroxy group of 2,2-dithiodiethanol (used in large excess) was anchored on trityl resin, and the remaining hydroxy group was loaded with the first amino acid. Standard chain elongation and TFA-based peptide release yielded peptide C-terminal dithiodiethanol esters in good purities. Under standard conditions of native chemical ligation (excess thiol, neutral pH), the dithiodiethanol function is presumably reduced and rearranged (or equilibrated) to the thioester via a 5-membered intermediate. The resulting thioesters are shown to undergo native chemical ligation with N-terminal cysteine peptides. Notably, hydrolysis of the reduced ester is a major competing reaction, especially in the presence of 6 M guanidinium chloride, which is often required for solubilization of large peptide fragments.  相似文献   

4.
Thiopeptides are a class of clinically interesting and highly modified peptide antibiotics. Their biosyntheses share a common paradigm for characteristic core formation but differ in tailoring to afford individual members. Herein we report an unusual deesterification-amidation process in thiostrepton maturation to furnish the terminal amide moiety. TsrB, serving as a carboxylesterase, catalyzes the hydrolysis of the methyl ester intermediate to provide the carboxylate intermediate, which can be converted to the amide product by an amidotransferase, TsrC. These findings revealed a C-terminal methylation of the precursor peptide, which is cryptic in thiostrepton biosynthesis but potentially common in the formation of its homologous series of thiopeptides that vary in the C-terminal form as methyl ester, carboxylate, or amide.  相似文献   

5.
爱滋病病毒中肽段的酶促合成   总被引:1,自引:0,他引:1  
陈少清  徐杰诚 《有机化学》1992,12(4):418-4284
为了进一步研究酶促合成在多肽合成中的实际应用,选择合成了爱滋病病毒(人类免疫缺损病毒,HIV-I)的gp41中氨基酸序列598-609的三个肽段,该部分是HIV-I中的2个抗原决定簇部分,H-Leu-Glg-Leu-Trp-Glg-cgs-Ser-Glg-Lgs-Leu-Ile-Cgs-OH可以作为抗原来检测HIV抗体.  相似文献   

6.
Creating efficient and residue-directed artificial proteases is a challenging task due to the extreme inertness of the peptide bond, combined with the difficulty of achieving specific interactions between the catalysts and the protein side chains. Herein we report strictly site-selective hydrolysis of a multi-subunit globular protein, hemoglobin (Hb) from bovine blood, by a range of ZrIV-substituted polyoxometalates (Zr-POMs) in mildly acidic and physiological pH solutions. Among 570 peptide bonds in Hb, selective cleavage was observed at only eleven sites, each occurring at Asp−X peptide bonds located in the positive patches on the protein surface. The molecular origins of the observed Asp−X selectivity were rationalized by means of molecular docking, DFT-based binding, and mechanistic studies on model peptides. The proposed mechanism of hydrolysis involves coordination of the amide oxygen to ZrIV followed by a direct nucleophilic attack of the side chain carboxylate group on the C-terminal amide carbon atom with formation of a cyclic anhydride, which is further hydrolyzed to give the reaction products. The activation energy for the cleavage of the structurally related Glu−X sequence compared to Asp−X was calculated to be higher by 1.4 kcal mol−1, which corresponds to a difference of about one order of magnitude in the rates of hydrolysis. The higher activation energy is attributed to the higher strain present in the six-membered ring of glutaric anhydride (Glu−X), as compared to the five-membered ring of the succinic anhydride (Asp−X) intermediate. Similarly, the cleavage at X−Asp and X−Glu bonds are predicted to be kinetically less likely as the corresponding activation energies were 6 kcal mol−1 higher, explaining the experimentally observed selectivity. The synergy between the negatively charged polyoxometalate cluster, which binds at positive patches on protein surfaces, and selective activation of Asp−X peptide bonds located in these regions by ZrIV ions, results in a novel class of artificial proteases with aspartate-directed reactivity, which is very rare among naturally occurring proteases.  相似文献   

7.
Degree of hydrolysis (DH) is defined as the proportion of cleaved peptide bonds in a protein hydrolysate. Several methods exist for determining DH; the most commonly used of these include the pH-stat, trinitrobenzenesulfonic acid (TNBS), o-phthaldialdehyde (OPA), trichloroacetic acid soluble nitrogen (SN-TCA), and formol titration methods. The pH-stat method is based on the number of protons released during hydrolysis; the TNBS, OPA, and formol titration methods are based on the measurement of amino groups generated from hydrolysis. The SN-TCA method measures the amount of TCA-soluble nitrogen, rather than DH. The pH-stat is the simplest and most commonly used method, but does not determine peptide bonds directly. In addition, the accuracy of the method depends on the type of hydrolytic enzymes used, the size of the hydrolyzed peptides, and the reaction temperature. Generally, the TNBS and OPA methods compare well and do directly determine DH. However, the assumption that the response factor for all derivatized N-terminal amino acids is similar may lead to inaccuracies. In conclusion, there is no consensus as to the best method for determining the DH of protein hydrolysates; consequently, there is a need for a standardized approach if interstudy comparisons are to be made.  相似文献   

8.
We have developed a novel method for enhancing the response of a peptide in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by activating the C-terminal carboxyl group through an oxazolone with which is coupled an amine containing a functional group to help ionize the peptide. The reactions consist of dehydration with acetic anhydride to give an oxazolone, followed by aminolysis with an appropriate amino acid derivative such as arginine methyl ester. The MALDI signal of Ac-Tyr-Gly-Gly-Phe-Leu-Arg-OMe, thus converted from leucine-enkephalin, was detected while completely excluding the responses of arginine-deficient peptides coexisting in the reaction mixture. Some less intense peaks corresponding to a few sequential degradation products, also terminated with the arginine derivative, were also observed. The side-chain groups potentially that are reactive were conveniently protected by acetylation simultaneous with the C-terminal activation, and those that remained unprotected were reduced to virtually negligible proportions when the reaction was conducted in a peptide solution of concentration less than 1 mM. The greatly increased responses of such arginine-terminated peptides could possibly be exploited to discern the C-terminal tryptic peptide of a protein that is otherwise almost insensitive to MALDI-MS in general. The simplicity of the post-source decay spectrum of enkephalin derivatized by arginine methyl ester characteristically accentuated z- and b-type ions, and this should facilitate sequencing of such derivatized peptides. Remaining problems with practical applications of this approach are discussed.  相似文献   

9.
In this study we investigated the multi-stage collision-induced dissociation (CID) of N-terminally acetylated di-, tri- and tetrapeptides in the form of C-terminal ethyl, n-propyl, isopropyl, n-butyl and tert-butyl esters and cationized by the attachment of Li(+), Na(+) and Ag(+). While methyl ester versions of the metal cationized peptides primarily eliminate H(2)O following collisional activation and dissociation, the ethyl, propyl and butyl ester versions of the peptides exhibit a dissociation pathway consistent with gamma-hydrogen transfer to the C-terminal carbonyl group, with associated elimination of an alkene, in a McLafferty-type rearrangement. The rearrangement leaves a metal cationized, free-acid form of the peptide, as confirmed by comparing the multi-stage CID of rearrangement products generated from peptide esters with the CID of corresponding metal cationized free-acid peptides. The transfer of a gamma-hydrogen in the rearrangement reaction was confirmed by investigating the CID of ethyl esters for which the terminal methyl group was labeled with deuterium. We found that the rearrangement product was significantly more abundant, relative to other product ions, when derived from isopropyl and tert-butyl esters than from ethyl, n-propyl or n-butyl ester analogues.  相似文献   

10.
Flaxseed contains the largest amount of lignan secoisolariciresinol diglucoside (SDG) oligomers and is the richest dietary source of SDG. SDG oligomers in the flaxseed extract are often hydrolyzed to break the ester linkages for the release of SDG and the glycosidic bonds for the release of secoisolariciresinol (SECO). The hydrolysates of SDG oligomers are complicated because of the production of esters in an alcohol-containing medium. In this study, a new gradient reversed-phase high-performance liquid chromatography (HPLC) method has been developed to be suitable for the separation and determination of: (1) SDG oligomers extracted from the defatted flaxseed powder by a 70% aqueous methanol solution; (2) SDG oligomers and their alkaline hydrolysates, including SDG, p-coumaric acid glucoside and its methyl ester, ferulic acid glucoside and its methyl ester in an alkaline hydrolytic solution; and (3) the succedent acid hydrolysates, including secoisolariciresinol monoglucoside (SMG), SECO, anhydrosecoisolariciresinol (anhydro-SECO), p-coumaric acid and its methyl ester, ferulic acid and its methyl ester, 5-hydroxymethyl-2-furfural (HMF) and its degradation product in an acid hydrolytic solution. The content of SDG oligomers in a defatted flaxseed powder was found to be 38.5 mg/g on a dry matter basis, corresponding to a SDG content of 15.4 mg/g, which was determined after alkaline hydrolysis. Furthermore, this study presented a major reaction pathway for the hydrolysis of SDG oligomers.  相似文献   

11.
The pathogenesis of Alzheimer's disease is strongly associated with the formation and deposition of beta-amyloid peptide (beta AP) in the brain. This peptide contains a methionine (Met) residue in the C-terminal domain, which is important for its neurotoxicity and its propensity to reduce transition metals and to form reactive oxygen species. Theoretical studies have proposed the formation of beta AP Met radical cations as intermediates, but no experimental evidence with regard to formation and reactivity of these species in beta AP is available, largely due to the insolubility of the peptide. To define the potential reactions of Met radical cations in beta AP, we have performed time-resolved UV spectroscopic and conductivity studies with small model peptides, which show for the first time that (i) Met radical cations in peptides can be stabilized through bond formation with either the oxygen or the nitrogen atoms of adjacent peptide bonds; (ii) the formation of sulfur-oxygen bonds is kinetically preferred, but on longer time scales, sulfur-oxygen bonds convert into sulfur-nitrogen bonds in a pH-dependent manner; and (iii) ultimately, sulfur-nitrogen bonded radicals may transform intramolecularly into carbon-centered radicals located on the (alpha)C moiety of the peptide backbone.  相似文献   

12.
Two main drawbacks seriously restrict the synthetic value of proteases as reagents in peptide fragment coupling: (i) native proteolytic activity and, thus, risk of undesired peptide cleavage; (ii) limited enzyme specificities restricting the amino acid residues between which a peptide bond can be formed. While the latter can be overcome by the use of substrate mimetics achieving peptide bond formation at nonspecific ligation sites, the risk of proteolytic cleavage still remains and hinders the wide acceptance of this powerful strategy for peptide coupling. This paper reports on the effect of the trypsin point mutant Asp189Glu on substrate mimetic-mediated reactions. The effect of this mutation on the steady-state hydrolysis of substrate mimetics of the 4-guanidinophenyl ester type and on trypsin-specific Lys- and Arg-containing peptides was investigated. The results were confirmed by enzymatic coupling reactions using substrate mimetics as the acyl donor and specific amino acid-containing peptides as the acyl acceptor. The competition assay verifies the predicted shift in substrate preference from Lys and Arg to the substrate mimetics and, thus, from cleavage to synthesis of peptide bonds. The combination of results obtained qualifies the trypsin mutant D189E as the first substrate mimetic-specific peptide ligase.  相似文献   

13.
In this report, we present the use of CE-MS as complement to RP separation for the identification of novel angiotensin-converting enzyme-inhibitory (ACEI) peptides from a complex milk protein hydrolysate. As preliminary step, fast protein LC (FPLC) was used to isolate the different casein fractions from raw ovine milk. Enzymatic hydrolysis of these fractions was performed by using proteolytic enzymes of gastrointestinal origin. The most active hydrolysate, corresponding to kappa-casein hydrolyzed with pepsin, chymotrypsin, and trypsin, was fractionated by RP-HPLC and the peptides contained in the active fractions were sequenced by CE coupled to IT-MS (CE-MS). The use of CE-MS allowed the identification of short peptides with ACEI activity included in the scarcely retained fraction obtained by semipreparative RP-HPLC. Among the identified peptides, those with hydrophobic or positively charged residues at the C-terminal tripeptide were chemically synthesized to determine their ACEI activity. This procedure allowed us to identify four novel potent ACEI peptides from kappa-casein with sequences IAK, YQQRPVA, WQVLPNAVPAK, and HPHPHLSF. These active sequences could be obtained by enzymatic hydrolysis either of the individual kappa-casein fraction or the total casein fraction from ovine milk.  相似文献   

14.
Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α‐amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α‐hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α‐hydroxy acids and α‐amino acids form depsipeptides—oligomers with a combination of ester and amide linkages—in model prebiotic reactions that are driven by wet–cool/dry–hot cycles. Through a combination of ester–amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long‐standing hypothesis that peptides might have arisen from ester‐based precursors.  相似文献   

15.
Many biologically active natural products have macrocyclic structures. In nonribosomal peptides macrocyclization is commonly achieved via the formation of intramolecular ester or amide bond catalyzed by thioesterase domains during biosynthesis. A unique and so far unknown type of peptide cyclization occurs in the nostocyclopeptide, a macrocyclic imine produced by the terrestrial cyanobacterium Nostoc sp. ATCC53789. In this work we show that a C-terminal reductase domain of the nostocyclopeptide nonribosomal peptide synthetase catalyzes the reductive release of a linear peptide aldehyde and thereby triggers the spontaneous formation of a stable imino head-to-tail linkage. This type of molecular self-assembly induced by the reductive release of reactive aldehydes may be more commonplace in other complex nonribosomal peptides than originally thought.  相似文献   

16.
Tandem ligation for the synthesis and modification of proteins entails forming two or more regiospecific amide bonds of multiple free peptide segments without a protecting-group scheme. We here describe a semi-orthogonal strategy for ligating three unprotected peptide segments, two of which contain N-terminal (NT) cysteine, to form in tandem two amide bonds, an Xaa-SPro (thiaproline), and then an Xaa-Cys. This strategy exploits the strong preference of an NT-cysteinyl peptide under acidic conditions to undergo selectively an SPro-imine ligation rather than a Cys-thioester ligation. Operationally, it was performed in the N --> C direction, first by an imine ligation at pH < 3 to afford an Xaa-thiazolidine ester bond between a peptide containing a carboxyl terminal (CT)-glycoaldehyde ester and a second peptide containing both an NT-Cys and a CT-thioester. The newly created O-ester-linked segment with a CT-thioester was then ligated to another NT-cysteinyl peptide through thioester ligation at pH > 7 to form an Xaa-Cys bond. Concurrently, this basic condition also catalyzed the O,N-acyl migration of an Xaa-thiazolidine ester to the Xaa-SPro bond at the first ligation site to complete the tandem three-segment ligation. Both ligation reactions were performed in aqueous buffered solvents. The effectiveness of this three-segment ligation strategy was tested in six peptides ranging from 19 to 70 amino acids, including thiaproline --> proline analogues of somatostatins and two CC-chemokines. The thiaproline replacements in these peptides and proteins did not result in altered biological activity. By eliminating the protecting-group scheme and coupling reagents, tandem ligation of multiple free peptide segments in aqueous solutions enhances the scope of protein synthesis and may provide a useful approach for combinatorial segment synthesis.  相似文献   

17.
With a view to rendering ACTH peptides absorbable by the oral route, a series of such peptides with increased lipophilic character was built up. This paper describes the synthesis of eleven derivatives of the ACTH peptide [D -Ser1, Lys17,18]-β-corticotrophin-(1–19)-nonadeca-peptide, containing lipophilic alkyl substituents of different kinds and sizes, bound to the carboxyl of terminal proline either by ester or amide linkage. The unsubstituted peptide [D -Ser1, Lys17,18]-β-corticotrophin-(1–19)-nonadecapeptide, and its C-terminal amide were also synthesized.  相似文献   

18.
Thioester method for the synthesis of cyclopeptides is improved by using Pac (Pac = phenacyl, CH2COC6Hs) ester as a protecting group of 3-mercaptopropionic acid. The Pac group is easy to be removed from C-terminal with zinc in acetic acid. The protected glycine thioester and peptide thioesters synthesized by the improved method, are easy to be purified, so the final linear peptides are pure enough for the following cyclization. Furthermore, this method is flexible for peptide chain elongation,either from C-termlnal or from N.terminal. So it is an efficient and practical method for synthesis of bioactive peptides. Two N-protected pentapeptide thioesters, Boc-Pro-Tyr-Leu-Ala-GIySCH2CH2COOPac and Boc-Ala-Tyr-Leu-Ala-Gly-SCH2CH2COOPac were synthesized by the improved thloester method.After deprotecting Pac ester with zinc in aqueous acetic acid and Boc group with trifluoroacetic acid in CH2C12, two free pentapeptide tldoesters were obtained. Ag^ -assisted cyclization in acetate buffered solution afforded two cyclic pentapeptides c(Pro-Tyr-Leu-Ala-Gly) and c(Ala-Tyr-Leu-Ala-Gly).Effects of different buffer pH, different Ag^ concentrations, etc. on the cyclization were studied.  相似文献   

19.
Here we examined the fragmentation, on a quadrupole ion-trap mass spectrometer, of the protonated ions of a group of peptides containing one arginine and two different acidic amino acids, one being aspartic acid (Asp) or glutamic acid (Glu) and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)]. Our results showed that, upon collisional activation, the cleavage of the peptide bond C-terminal to C(SO2H) is much more facile than that of the peptide bond C-terminal to Asp, Glu, or C(SO3H). There is no significant difference, however, in susceptibility to cleavage of peptide bonds that are C-terminal to Asp, Glu, and C(SO3H). To understand these experimental observations, we carried out B3LYP/6-31G* density functional theory calculations for a model cleavage reaction of GXG --> b2 + Gly, in which X is Asp, Glu, C(SO2H), or C(SO3H). Our calculation results showed that the cleavage reaction is thermodynamically more favorable when X = C(SO2H) than when X = Asp or C(SO3H). We attributed the less facile cleavage of the amide bond after Glu to that the formation of a six-membered ring b ion for Glu-bearing peptides is kinetically not as favorable as the formation of a five-membered ring b ion for peptides containing the other three acidic amino acids. The results from this study may provide useful tools for peptide sequencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号