首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The ground state and several low-lying excited states of the Mg2 dimer have been studied by means of a combination of the complete-active-space multiconfiguration self-consistent-field (CASSCF)/CAS multireference second-order perturbation theory (CASPT2) method and coupled-cluster with single and double excitations and perturbative contribution of connected triple excitations [CCSD(T)] scheme. Reasonably good agreement with experiment has been obtained for the CCSD(T) ground-state potential curve but the dissociation energy of the only experimentally known A1Σ u + excited state of Mg2 is somewhat overestimated at the CASSCF/CASPT2 level. The spectroscopic constants D e, R e and ωe deduced from the calculated potential curves for other states are also reported. In addition, some spin–orbit matrix elements between the excited singlet and triplet states of Mg2 have been evaluated as a function of internuclear separation. Received: 10 May 2001 / Accepted: 15 August 2001 / Published online: 30 October 2001  相似文献   

2.
 For the intermolecular interaction energies of ion-water clusters [OH(H2O) n (n=1,2), F(H2O), Cl(H2O), H3O+(H2O) n (n=1,2), and NH4 +(H2O) n (n=1,2)] calculated with correlation-consistent basis sets at MP2, MP4, QCISD(T), and CCSD(T) levels, the basis set superposition error is nearly zero in the complete basis set (CBS) limit. That is, the counterpoise-uncorrected intermolecular interaction energies are nearly equal to the counterpoise-corrected intermolecular interaction energies in the CBS limit. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are more reliable than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies evaluated using the MP2/aug-cc-pVDZ level is reliable. Received: 14 March 2001 / Accepted: 25 April 2001 / Published online: 9 August 2001  相似文献   

3.
4.
 Fully relativistic, four-component Dirac–Fock calculations and quasirelativistic pseudopotential calculations at different ab initio levels are used to study the bonding trends among the naked, triatomic [OAnO] q+ groups or the oxyfluorides [AnO n F m ] q with f 0 configurations. The triatomic f 0 series is suggested to range from the bent ThO2 via the linear OPaO+ to at least NpO2 3+, a possible new gas-phase species. The neutral oxyfluoride molecules include the experimentally unknown NpO2F3 and PuO2F4. The latter is a candidate for the so far unknown oxidation state Pu(VIII), which is found to lie considerably above Pu(VI), but to be locally stable. Their all-oxygen isoelectronic analogues are NpO5 3−, known in the solid state, and the unknown PuO6 4−. Further possible candidates for Pu(VIII) are PuO4(D 4h ) and the cube-shaped PuF8(O h ). Isoelectronic UF8 2− is calculated to be D 4d , in agreement with experiment. Received: 18 May 2001 / Accepted: 21 June 2001 / Published online: 11 October 2001  相似文献   

5.
Relativistic energy-consistent small-core lanthanide pseudopotentials of the Stuttgart–Bonn variety and extended valence basis sets have been used for the investigation of the dimers La2 and Lu2. It was found that the ground states for La2 and Lu2 are most likely 1 g + g 2π u 4) and 3 g (4f 144f 14σ g 2σ u 2πu 2), respectively. The molecular constants including error bars were derived from multireference configuration interaction as well as coupled-cluster calculations, taking into account corrections for atomic spin–orbit splitting as well as possible basis set superposition errors. The theoretical values for La2 (R e=2.70±0.03 ?, D e=2.31±0.13 eV, ωe=186±13 cm−1) show good agreement with the experimental binding energy (D e=2.52±0.22 eV), but the experimental vibrational constant in an Ar matrix (ωe=236±0.8 cm−1) is significantly higher. For Lu2 the theoretical values (R e=3.07±0.03 ?, D e=1.40±0.12 eV, ωe=123±1 cm−1) are in overall excellent agreement with experimental data (D e=1.43±0.34 eV, ωe=122± 1 cm−1). The electronic structures of La2 and Lu2 are compared to those other lanthanide dimers and trends in the series are discussed. Received: 25 March 2002 / Accepted: 2 June 2002 / Published online: 21 August 2002  相似文献   

6.
 The most stable structures of V x O y +/V x O y (x=1, 2, y=1–5) clusters and their interaction with O2 are determined by density functional calculations, the B3LYP functional with the 6-31G* basis set. The nature of the bonding of these clusters and the interaction with O2 have been studied by topological analysis in the framework of both the atoms-in-molecules theory of Bader and the Becke–Edgecombe electron localization function. Bond critical points are localized by means of the analysis of the electron density gradient field, ∇ρ(r), and the electron localization function gradient field, ∇η(r). The values of the electron density properties, i.e., electron density, ρ(r), Laplacian of the electron density, ∇2ρ(r), and electron localization function, η(r), allow the nature of the bonds to be characterized, and linear correlation is found for the results obtained in both gradient fields. Vanadium-oxygen interactions are characterized as unshared-electron interactions, and linear correlation is observed between the electron density properties and the V–O bond length. In contrast, O2 units involve typical shared-electron interactions, as for the dioxygen molecule. Four different vanadium–oxygen interactions are found and characterized: a molecular O2 interaction, a peroxo O2 2− interaction, a superoxo O2 interaction and a side-on O2 interaction. Received: 15 October 2001 / Accepted: 30 January 2002 / Published online: 24 June 2002  相似文献   

7.
From quantum-chemical calculations of rotational g factor and new experimental measurements of strengths of lines in infrared spectra of vibration–rotational bands v′–0 in absorption, with 1≤v′≤4, of 12C16O, and from analysis of 16,947 frequencies and wave numbers assigned to pure rotational and vibration–rotational transitions within electronic ground state X 1Σ+, including new measurements of band 4–0 of 12C16O, we evaluate radial functions for potential energy and electric dipolar moment, the latter both in polynomial form and as a rational function that has qualitatively correct behaviour under limiting conditions. Received: 8 November 2001 / Accepted: 5 February 2002 / Published online: 14 August 2002  相似文献   

8.
 In order to calculate more accurately the enthalpies of formation, ΔH f°(298 K), for large molecules using the CBS-4M method, a new formulation of the empirical higher-level correction to the energy is proposed: ΔE=a|S|2 i i I i i +b(n α+n β)+cΔ<S 2>+Σn i d i . The new methodology (CBS-4MB) applied to a set of 114 molecules of different size significantly decreases the mean absolute deviation from 3.78 to 2.06 kcal/mol. Received: 7 February 2001 / Accepted: 5 April 2001 / Published online: 13 June 2001  相似文献   

9.
 Ab initio calculations have been performed to investigate the state transition in photoinduced electron transfer reactions between tetracyanoethylene and biphenyl as well as naphthalene. Face-to-face conformations of electron donor–acceptor (EDA) complexes were selected for this purpose. The geometries of the EDA complexes were determined by using the isolated optimized geometries of the donor and the acceptor to search for the maximum stabilization energy along the center-to-center distance. The correction of interaction energies for basis set superposition error was considered by using counterpoise methods. The ground and excited states of the EDA complexes were optimized with complete-active-space self-consistent-field calculations. The theoretical study of the ground state and excited states of the EDA complex in this work reveals that the S1 and S2 states of the EDA complexes are charge–transfer (CT) excited states, and CT absorption which corresponds to the S0→S1 and S0→S2 transitions arise from π−π* excitation. On the basis of an Onsager model, CT absorption in dichloromethane was investigated by considering the solvent reorganization energy. Detailed discussions on the excited state and on the CT absorptions were made. Received: 30 April 2001 / Accepted: 18 October 2001 / Published online: 9 January 2002  相似文献   

10.
The improved generator coordinate Hartree–Fock (GCHF) method is extended to molecular systems. The Griffin–Hill–Wheeler–HF equations were solved by an integral discretization technique. The method is then implemented with the use of the GAMESS program and applied to the H2, Li2, and LiH molecules. For these molecules, sequences of basis sets of atom-centred Gaussian-type functions are employed to explore the accuracy achieved with our approach. For all systems studied, our ground-state HF total energies are better than those obtained with basis sets generated with the original GCHF method for molecules and larger even-tempered basis sets. For H2, Li2, and LiH, the differences between our best energies and the corresponding numerical HF results are about 2 × 10−2, 1, and 4 × 10−1 μhartree, respectively. The dipole, quadrupole, and octupole moments at the center of mass and electric field, the electric field gradient, the electrostatic potential, and the electron density at the nuclei were evaluated and compared with results reported in the literature. Received: 4 May 1999 / Accepted: 22 July 1999 / Published online: 2 November 1999  相似文献   

11.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

12.
 The nature of the Maxwell–Cartesian spherical harmonics S (n) K and their relation to tesseral harmonics Y nm is examined with the help of “tricorn arrays” that display the components of a totally symmetric Cartesian tensor of any rank in a systematic way. The arrays show the symmetries of the Maxwell–Cartesian harmonic tensors with respect to permutation of axes, the traceless properties of the tensors, the linearly independent subsets, the nonorthogonal subsets, and the subsets whose linear combinations produce the tesseral harmonics. The two families of harmonics are related by their connection with the gradients of 1/r, and explicit formulas for the transformation coefficients are derived. The rotational transformation of S (n) K functions is described by a relatively simple Cartesian tensor method. The utility of the Maxwell–Cartesian harmonics in the theory of multipole potentials, where these functions originated in the work of Maxwell, is illustrated with some newer applications which employ a detracer exchange theorem and make use of the partial linear independence of the functions. The properties of atomic orbitals whose angular part is described by Maxwell–Cartesian harmonics are explored, including their angular momenta, adherence to an Uns?ld-type spherical symmetry relation, and potential for eliminating an angular momentum “contamination” problem in Cartesian Gaussian basis sets. Received: 9 July 2001 / Accepted: 7 September 2001 / Published online: 19 December 2001  相似文献   

13.
Based on the continuum dielectric model, this work has established the relationship between the solvent reorganization energy of electron transfer (ET) and the equilibrium solvation free energy. The dipole-reaction field interaction model has been proposed to describe the electrostatic solute-solvent interaction. The self-consistent reaction field (SCRF) approach has been applied to the calculation of the solvent reorganization energy in self-exchange reactions. A series of redox couples, O2/O 2, NO/NO+, O3/O 3, N3/N 3, NO2/NO+ 2, CO2/CO 2, SO2/SO 2, and ClO2/ClO 2, as well as (CH2)2C-(-CH2-) n -C(CH2)2 (n=1 ∼ 3) model systems have been investigated using ab initio calculation. For these ET systems, solvent reorganization energies have been estimated. Comparisons between our single-sphere approximation and the Marcus two-sphere model have also been made. For the inner reorganization energies of inorganic redox couples, errors are found not larger than 15% when comparing our SCRF results with those obtained from the experimental estimation. While for the (CH2)2C–(–CH2–) n –C(CH2)2 (n=1 ∼ 3) systems, the results reveal that the solvent reorganization energy strongly depends on the bridge length due to the variation of the dipole moment of the ionic solute, and that solvent reorganization energies for different systems lead to slightly different two-sphere radii. Received: 19 April 2000 / Accepted: 6 July 2000 / Published online: 27 September 2000  相似文献   

14.
 The B3LYP/6-311G(d) and CCSD(T)/6-311G(2df) (single-point) methods have been used to investigate the singlet potential energy surface of C2NP, in which seven stationary isomers and seventeen interconversion transition states are involved. At the final CCSD(T)/6-311G(2df)//B3LYP6-311G(d) level with zero-point vibrational energy correction the lowest-lying isomer is a linear NCCP followed by two linear CNCP isomers at 23.9  and CCNP at 65.8 kcal mol−1, respectively. The three isomers are kinetically very stable towards both isomerization and dissociation, and CCNP is even more kinetically stable than CNCP – by 14.3 kcal mol−1 despite its high energy. Further comparative calculations were performed at the QCISD and QCISD(T) levels with the 6-311G(d) and 6-311G(2d) basis sets to obtain more reliable structures and spectroscopy for the three isomers. The calculated bond lengths, rotational constant, and dipole moment for NCCP were in close agreement with the experimentally determined values. Finally, similarities and discrepancies between the potential energy surface of C2NP and those of the analogous species C2N2 and C2P2 were compared. The results presented in this paper might be helpful for future identification of the two still unknown yet kinetically very stable isomers CNCP and CCNP, both in the laboratory and in interstellar space. Received: 3 January 2001 / Accepted: 6 June 2001 / Published online: 30 October 2001  相似文献   

15.
Ab initio calculations were performed to investigate the structure and bonding of the phenol dimer and its cation, especially the OH stretching frequencies. Some stable structures of the phenol dimer and its cation were obtained at the Hartree–Fock level and were found to be in agreement with predictions based on spectroscopic investigations. In these dimers the phenol moieties are bound by a single OH⋯O hydrogen bond. The hydrogen bond is much stronger in the dimer cation than in the neutral dimer. The calculated binding energy of the phenol dimer in the most stable structure was 6.5–9.9 kcal/mol at various levels of calculation, compared with the experimental value of 5 kcal/mol or greater. The binding energy of the phenol dimer cation is more than 3 times (24.1–30.6 kcal/mol) as large as that of the neutral dimer. For the phenol dimer the OH stretching frequency of the proton-accepting phenol (PAP) is 3652 cm−1 and that of the proton-donating phenol (PDP) is 3516 cm−1; these are in agreement with observed values of 3654 and 3530 cm−1, respectively. For the phenol dimer cation the OH stretching frequency of the PAP is 3616–3618 cm−1 in comparison with an observed value of 3620 ± 3 cm−1. That of the PDP in the dimer cation is calculated to be 2434–2447 cm−1, which is 1210–1223 cm−1 lower than that of the bare phenol. The large reduction in the OH stretching frequency of the PDP in the phenol dimer cation is attributed to the formation of a stronger hydrogen bond in the cation than in the neutral dimer. Received: 24 March 2000 / Accepted: 26 April 2000 / Published online: 11 September 2000  相似文献   

16.
The structures, properties and the bonding character for sub-carbonyl Si, SiCO and Si(CO)2, in singlet and triplet states have been investigated using complete-active-space self-consistent field (CASSCF), density functional theory and second-order M?ller–Plesset methods with a 6-311+G* basis set. The results indicate that the SiCO species possesses a 3ground state, and the singlet 1Δ excited state is higher in energy than the 3 state by 17.3 kcalmol−1 at the CASSCF–MP2/6-311+G* level and by 16.4 kcalmol−1 at the CCSD(T)/6-311+G* level. The SiCO ground state may be classified as silene (carbonylsilene), and its COδ− moiety possesses CO property. The formation of SiCO causes the weakening of CO bonds. The Si–C bond consists of a weak σ bond and two weak π bonds. Although the Si–C bond length is similar to that of typical Si–C bonds, the bond strength is weaker than the Si–C bonds in Si-containing alkanes; the calculated dissociation energy is 26.2 kcalmol−1 at the CCSD(T)/6-311+G* level. The corresponding bending potential-energy surface is flat; therefore, the SiCO molecule is facile. For the bicarbonyl Si systems, Si(CO)2, there exist two V-type structures for both states. The stablest state is the singlet state (1A1), and may be referred to the ground state. The triplet state (3B1) is energetically higher in energy than the 1A1 state by about 40 kcalmol−1 at the CCSD(T)/6-311 + G* level. The bond lengths in the 1A1 state are very close to those of the SiCO species, but the SiCO moieties are bent by about 10°, and the CSiC angles are only about 78°. The corresponding 3B1 state has a CSiC angle of about 54° and a SiCO angle of about 165°, but its Si–C and C–O bonds are longer than those in the 1A1 state by about 0.07 and 0.03 ?, respectively. This Si(CO)2 (1A1) has essentially silene character and should be referred to as a bicarbonyl silene. Comparison of the CO dissociation energies of SiCO and Si(CO)2 in their ground states indicates that the first CO dissociation energy of Si(CO)2 is smaller by about 7 kcalmol−1 than that of SiCO; the average one over both CO groups is also smaller than that of SiCO. A detailed bonding analysis shows that the possibility is small for the existence of polycarbonyl Si with more than three CO. This prediction may also be true for similar carbonyl complexes containing other nonmetal and non-transition-metal atoms or clusters. Received: 17 April 2002 / Accepted: 11 August 2002 / Published online: 4 November 2002 Acknowledgements. This work was supported by the National Natural Science Foundation of China (29973022) and the Foundation for Key Teachers in University of the State Ministry of Education of China. Correspondence to: Y. Bu e-mail: byx@sdu.edu.ch  相似文献   

17.
18.
 Based on the spherical cavity approximation and the Onsager model, a dipole–reaction field interaction model has been proposed to elucidate the solvent reorganization energy of electron transfer (ET). This treatment only needs the cavity radius and the solute dipole moment in the evaluation of the solvent reorganization energy, and fits spherelike systems well. As an application, the ET reaction between p-benzoquinone and its anion radical has been investigated. The inner reorganization energy has been calculated at the level of MP2/6–31+G, and the solvent reorganization energies of different conformations have been evaluated by using the self-consistent reaction field approach at the HF/6–31+G level. Discussions have been made on the cavity radii and the values are found to be reasonable when compared with the experimental ones of some analogous intramolecular ET reactions. The ET matrix element has been determined on the basis of the two-state model. The fact that the value of the ET matrix element is about 10 times larger than RT indicates that this ET reaction can be treated as an adiabatic one. By invoking the classical Marcus ET model, a value of 4.9 × 107M−1s−1 was obtained for the second-order rate constant, and it agrees quite well with the experimental one. Received: 19 October 2001 / Accepted: 17 January 2002 / Published online: 3 May 2002  相似文献   

19.
 By using completely optimized basis functions it is shown that the convergence of the Hartree–Fock energy for the H3 +, Li2 and N2 molecules is significantly better described by exponential behavior than by inverse power dependence. This is the case both with respect to the number of basis functions of a given type and with respect to the highest angular momentum function included. The Hartree–Fock limit for H3 + is estimated to be −1.300372125 hartree. Received: 14 February 2000 / Accepted: 12 April 2000 / Published online: 18 August 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号