首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fast-charging capability of rechargeable batteries is greatly limited by the sluggish ion transport kinetics in anode materials. Here we develop an iodized polyacrylonitrile (I-PAN) anode that can boost the bulk/interphase lithium (Li)-ion diffusion kinetics and accelerate Li-ion desolvation process to realize high-performance fast-charging Li-ion batteries. The iodine immobilized in I-PAN framework expands ion transport channels, compresses the electric double layer, and changes the inner Helmholtz plane to form LiF/LiI-rich solid electrolyte interphase layer. The dissolved iodine ions in the electrolyte self-induced by the interfacial nucleophilic substitution of PF6 not only promote the Li-ion desolvation process, but also reuse the plated/dead Li formed on the anode under fast-charging conditions. Consequently, the I-PAN anode exhibits a high capacity of 228.5 mAh g−1 (39 % of capacity at 0.5 A g−1 delivered in 18 seconds) and negligible capacity decay for 10000 cycles at 20 A g−1. The I-PAN||LiNi0.8Co0.1Mn0.1O2 full cell shows excellent fast-charging performance with attractive capacities and negligible capacity decay for 1000 cycles at extremely high rates of 5 C and 10 C (1 C=180 mA g−1). We also demonstrate high-performance fast-charging sodium-ion batteries using I-PAN anodes.  相似文献   

2.
Metal selenides are promising anodes for sodium-ion batteries (SIBs) due to the high theoretical capacity through conversion reaction mechanism. However, developing metal selenides with superior electrochemical sodium-ion storage performance is still a great challenge. In this work, a novel composite material of free-standing NiSe2 nanoparticles encapsulated in N-doped TiN/carbon composite nanofibers with carbon nanotubes (CNTs) in-situ grown on the surface (NiSe2@N-TCF/CNTs) is prepared by electrospinning and pyrolysis technique. In this composite materials, NiSe2 nanoparticles on the surface of carbon nanofibers were encapsulated into CNTs, thus avoiding aggregation. The in-situ grown CNTs not only improve the conductivity but also act as a buffer to accommodate the volume expansion. TiN inside the nanofibers further enhances the conductivity and structural stability of carbon-based nanofibers. When directly used as anode for SIBs, the NiSe2@N-TCF/CNT electrode delivered a reversible capacity of 392.1 mAh/g after 1000 cycles and still maintained 334.4 mAh/g even at a high rate of 2 A/g. The excellent sodium-ion storage performance can be attributed to the fast Na+ diffusion and transfer rate and the pseudocapacitance dominated charge storage mechanism, as is evidenced by kinetic analysis. The work provides a novel approach to the fabrication of high-performance anode materials for other batteries.  相似文献   

3.
Transition metal phosphides (TMPs) are promising anode candidates for sodium-ion batteries, due to their high theoretical specific capacity and working potential. However, the low conductivity and excessive volume variation of TMPs during insertion/extraction of sodium ions result in a poor rate performance and long-term cycling stability, largely limiting their practical application. In this paper, NiP2 nanoparticles encapsulated in three-dimensional graphene (NiP2@rGO) were obtained from the flower-like spherical α-Ni(OH)2 by phosphating and carbon encapsulation processes. When used as a sodium-ion batteries anode material, the NiP2@rGO composite shows an excellent cycling performance (117 mA h g−1 at 10 A g−1 after 8000 cycles). The outstanding electrochemical performance of NiP2@rGO is ascribed to the synergistic effect of the rGO and NiP2. The rGO wrapped on the NiP2 nanoparticles build a conductive way, improving ionic and electronic conductivity. The effective combination of NiP2 nanoparticles with graphene greatly reduces the aggregation and pulverization of NiP2 nanoparticles during the discharge/charge process. This study may shed light on the construction of high-performance anode materials for sodium-ion batteries and to other electrode materials.  相似文献   

4.
The application of transition metal dichalcogenides(TMDs) as anode materials in sodium-ion batteries (SIBs) has been hindered by low conductivity and poor cyclability. Herein, we report the synthesis of CoxFe1-xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1-xS2@S-Ti3C2) by a facile co-precipitation process and thermal-sulfurization reaction. The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer. In particular, sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes, leading the increase of specific capacity and cycling the stability of anode materials. As a result, CoxFe1-xS2@S-Ti3C2 anodes exhibited high capacity, high rate capability and long cycle life(399 mA·h/g at 5 A/g with an 94% capacity retention after 600 cycles).  相似文献   

5.
The bismuth nanosheets grown on carbon fiber cloth were designed. For sodium-ion batteries, the Bi/CFC electrode exhibited a high reversible capacity of 350 and 240 mAh g 1 after 300 cycles at 50 and 200 mA g 1, as well as a good rate capability. Besides, the electrode displayed two flat potential profiles during the charge/discharge process. The results suggest that the Bi/CFC electrode has excellent potential as an anode for sodium-ion batteries.  相似文献   

6.
Metal selenides as anode materials for sodium-ion batteries have attracted considerable attention owing to their high theoretical specific capacities and variable composition and structures.However,the achievement of long cycle life and superior rate performance is challenging for these selenide materials due to the volume variation upon cycling.Herein,a composite composed of a new binary-metal selenide[Cu2SnSe3(CSS)]and carbon nanotubes(CNTs)was constructed via a hydrothermal process followed by calcination at 600℃.Benefited from the unique structure of binary-metal selenide and the conductive network of CNTs,the Cu2SnSe3/carbon nanotubes(CSS/CNT)composite exhibits excellent electrochemical performance when used as an anode material for sodium-ion batteries.A reversible specific capacity of 399 mA·h/g can be maintained at a current density of 100 mA/g even after 100 cycles.This work provides a promising strategy for rational design of binary-metal selenides upon delicate crystal phase control as electrode materials.  相似文献   

7.
Alkali-ion batteries,including lithium-ion batteries(LIBs),sodium-ion batteries(NIBs)and potassium-ion batteries(KIBs),with alloy-based anodes exhibit huge potential in high energy density due to the natural abundance,high theoretical capacity as well as suitable operating voltages.However,the practical application is severely hindered by the huge volume variation based on the alloying mechanism and inferior conductivity,especially for red phosphorus(P)and silicon(Si)anodes,which induces poor rate capability and fast capacity decay.Herein,we will briefly review fundamental advantages and challenges of alloy-based anode materials.Then,effective modification strategies of alloy-based anode materials for boosting the performance would be emphasized and discussed.Finally,we will share our perspectives and some opportunities to obtain high-performance alloy-based anode materials for further application.  相似文献   

8.
Sodium-ion batteries have attracted interest as an alternative to lithium-ion batteries because of the abundance and cost effectiveness of sodium. However, suitable anode materials with high-rate and stable cycling performance are still needed to promote their practical application. Herein, three-dimensional Na2Ti3O7 nanowire arrays with enriched surface vacancies endowed by phosphorus doping are reported. As anodes for sodium-ion batteries, they deliver a high specific capacity of 290 mA h g−1at 0.2 C, good rate capability (50 mA h g−1at 20 C), and stable cycling capability (98 % capacity retention over 3100 cycles at 20 C). The superior electrochemical performance is attributed to the synergistic effects of the nanowire arrays and phosphorus doping. The rational structure can provide convenient channels to facilitate ion/electron transport and improve the capacitive contributions. Moreover, the phosphorus-doping-induced surface vacancies not only provide more active sites but also improve the intrinsic electrical conductivity of Na2Ti3O7, which will enable electrode materials with excellent sodium storage performance. This work may provide an effective strategy for the synthesis of other anode materials with fast electrochemical reaction kinetics and good sodium storage performance.  相似文献   

9.
Carbon-layer-coated porous Ni-doped CoSe2 (Ni-CoSe2/C) nanospheres have been fabricated by a facile hydrothermal method followed by a new selenization strategy. The porous structure of Ni-CoSe2/C is formed by the aggregation of many small particles (20–40 nm), which are not tightly packed together, but are interspersed with gaps. Moreover, the surfaces of these small particles are covered with a thin carbon layer. Ni-CoSe2/C delivers superior rate performance (314.0 mA h g−1 at 20 A g−1), ultra-long cycle life (316.1 mA h g−1 at 10 A g−1 after 8000 cycles), and excellent full-cell performance (208.3 mA h g−1 at 0.5 A g−1 after 70 cycles) when used as an anode material for half/full sodium-ion batteries. The Na storage mechanism and kinetics have been confirmed by ex situ X-ray diffraction analysis, assessment of capacitance performance, and a galvanostatic intermittent titration technique (GITT). GITT shows that Na+ diffusion in the electrode material is a dynamic change process, which is associated with a phase transition during charge and discharge. The excellent electrochemical performance suggests that the porous Ni-CoSe2/C nanospheres have great potential to serve as an electrode material for sodium-ion batteries.  相似文献   

10.
The development of novel anode materials,with superior rate capability,is of utmost significance for the successful realization of sodium-ion batteries(SIBs).Herein,we present a nanocomposite of Nb_2 O_5 and reduced graphene oxide(rGO) by using hydrothermal-assisted microemulsion route.The water-in-oil microemulsion formed nanoreactors,which restrained the particle size of Nb_2 O_5 and shortened the diffusion length of ions.Moreover,the rGO network prevented agglomeration of Nb_2 O_5 nanoparticles and improved electronic conductivity.Consequently,Nb_2 O_5@rGO nanocomposite is employed as anode material in SIBs,delivering a capacity of 195 mAh/g after 200 charge/discharge cycles at 0.2 A/g.Moreover,owing to conductive rGO network,the Nb_2 O_5@rGO electrode rende red a specific capacity of 76 mAh/g at high current density of 10 A/g and maintained 98 mAh/g after 1000 charge/discharge cycles at 2 A/g.The Nb_2 O_5@rGO electrode material prepared by microemulsion method shows promising possibilities for application of SIBs.  相似文献   

11.
Anatase TiO2 is a promising material for Li-ion (Li+) batteries with fast charging capability. However, Li+ (de)intercalation dynamics in TiO2 remain elusive and reported diffusivities span many orders of magnitude. Here, we develop a smart protocol for scanning electrochemical cell microscopy (SECCM) with in situ optical microscopy (OM) to enable the high-throughput charge/discharge analysis of single TiO2 nanoparticle clusters. Directly probing active nanoparticles revealed that TiO2 with a size of ≈50 nm can store over 30 % of the theoretical capacity at an extremely fast charge/discharge rate of ≈100 C. This finding of fast Li+ storage in TiO2 particles strengthens its potential for fast-charging batteries. More generally, smart SECCM-OM should find wide applications for high-throughput electrochemical screening of nanostructured materials.  相似文献   

12.
Recently,sodium-ion batteries gradually become the promising alternative to lithium-ion batteries because of cost considerations.In this work,a kind of Bi2MoO6 nanosheets@N,S codoped graphene composite is designed and fabricated for sodium storage applications.Detailed characterizations are employed to investigate its morphology,structure and chemical compositions.When evaluated as an anode material for sodium-ion batteries,the as-prepared composite is able to display a specific capacity of 254 mA·h/g after 50 cycles at a current density of 0.2 A/g,and 186 mA·h/g at 1.6 A/g during the rate capability test.As a result,the further morphology and structure optimization is still required for high performance sodium-ion batteries.  相似文献   

13.
Tin oxide, SnO2, is a suitable anode for both lithium-ion and sodium-ion batteries (LIBs and SIBs) unlike graphite and silicon, which are only suitable anodes for LIB. SnO2 has garnered much attention because of its high theoretical capacities (LIB = 1494 mA h g?1 and SIB = 1378 mA h g?1). However, the commercialization of SnO2 anodes is still hugely challenged because these anodes suffer from large volume expansion caused by lithiation/delithiation or sodiation/desodiation during cycling, leading to severe capacity fading. The adopted strategies to solve these problems are nanosizing that greatly improves the structural stability of the material and helps to have fast reaction kinetics. Synthesizing nanocomposite of SnO2 nanoparticles with nanoporous carbonaceous materials to buffer the volume expansion, enhance cycling stability; create oxygen deficiency to improve intrinsic conductivity. In this review, the recent research trends on SnO2 as anode for both LIB and SIB systems are presented.  相似文献   

14.
Nanoporous MnO frameworks with highly dispersed Co nanoparticles were produced from MnCO3 precursors prepared in a gel matrix. The MnO frameworks that contain 20 mol % Co exhibited excellent cycle performance as an anode material for Li‐ion batteries. The solid–electrolyte interphase (SEI) formed in the frameworks through the electrochemical reaction mediates the active materials, such as MnO, Mn, and Li2O, during the conversion reaction in the charge–discharge cycle. The Co nanoparticles and SEI provide the electron and Li‐ion conductive networks, respectively. The ternary nanocomposites of the MnO framework, metallic Co nanoparticles, and embedded SEI are categorized as durable anode materials for Li‐ion batteries.  相似文献   

15.
As-prepared polyaniline (PANI) nanorods have been used to synthesize an iron phosphate/polyaniline (FePO4/PANI) composition through the microemulsion technique. After sintering at 460 °C under a nitrogen protective atmosphere, the PANI carbonized, yielding the amorphous iron phosphate/carbonized polyaniline nanorods (FePO4/CPNRs) composite, which acts as the cathode material in sodium-ion batteries (SIBs). The electrochemical performance of FePO4/CPNRs composite shows an initial discharge specific capacity of 140.2 mAh g?1, with the discharge specific capacity being maintained at 134.4 mAh g?1 after the 120th cycle, up to 87.9 % of the theoretical capacity (154.1 mAh g?1 for NaFePO4), as well as an excellent rate capability in sodium-ion batteries. Compared with pure FePO4, the electrochemical performance has been greatly improved. On the one hand, using the CPNRs as conductive medium significantly improves electronic transport. On the other hand, the FePO4 sphere of nanoscale particles, which has a large specific surface area, can promote an active material/electrolyte interface reaction and improve the speed of sodiation and desodiation during the charge and discharge process. The amorphous FePO4/CPNRs composite shows outstanding electrochemical performance as competitive cathode material in SIBs.  相似文献   

16.
《中国化学快报》2022,33(8):3802-3808
Remarkable Li-ion battery (LIB) anode materials need to have long cycle life and fast charge/discharge rate, however they are difficult to be realized in the monolayer anode materials. The monolayer β-Bi has the stiffness of only 33.0 N/m, thus the Bi/G heterostructure is proposed to improve the electronic and mechanical properties and to produce better LIB anode performance in this paper. The calculated results show that Bi/G heterostructure has excellent thermodynamic, dynamical and mechanical stability. The band gap is only 0.04 eV, which ensures remarkable electrical conductivity. In addition, the Bi/G heterostructure has higher stiffness (369.2 N/m) than that of monolayer β-Bi and graphene. The diffusion barrier (Ebarrier) of 0.32 eV and volume expansion ratio (VER) of only 4% can ensure the rapid transport of Li+ ions in the charge/discharge cycling process and long life of the LIB. These calculated theoretical results for describing the detail properties of Li storage and diffusion in the Bi/G heterostructure can supply adequate conclusive evidence for the prediction of remarkable properties of Bi/G heterostructure as an anode material for LIBs.  相似文献   

17.
使用电解液成膜添加剂是一种简单高效的提高电池循环稳定性的方法。氟代碳酸乙烯酯(FEC)的最低未被占据分子轨道(LUMO)能量较低,易被还原,通常被认为是很好的负极成膜添加剂,但因其最高占据分子轨道(HOMO)能量也较低,抗氧化性较好,故其被认为不在正极上发生作用。本工作结合电化学,形貌分析,化学成分表征,原位结构分析等方法研究了FEC添加剂在钠离子电池中的作用。我们发现适量的FEC添加剂不仅可以显著抑制电解液溶剂碳酸丙烯酯(PC)的分解,而且会在正极上形成一层富NaF的保护层,提高循环过程中正极晶格结构稳定性,从而提高电池的循环稳定性。密度泛函理论(DFT)计算表明,FEC之所以能在正极上形成保护层,可能与其容易在正极界面与钠盐阴离子ClO_4~-结合反应有关。  相似文献   

18.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

19.
Sodiumion batteries(SIBs)have attracted intensive attention as promising alternative to lithium-ionbatteries(LIBs)for large scale energy storage systems because of low cost of sodium,similar energy storage mechanism and the reasonable performance.However,it is still a great challenge to search and design a robust structure of anode materials with excellent cycling stability and high rate capability for SIBs.Herein,multilayer porous vanadium nitride(VN)microsheets are synthesized through a facile and scalable hydrothermal synthesis-nitrogenization strategy as an effective anode material for SIBs.The multilayer porous VN microsheets not only offer more active sites for fast Na+insertion/extraction process and short diffusion pathway,but also effectively buffer the volume change of anode due to more space in the multilayer porous structure.The large proportions of capacitive behavior imply that the Na+charge storage depends on the intercalation pseudocapacitive mechanism.The multilayer porous VN microsheets electrodes manifest excellent cycling stability and rate capability,delivering a discharge capacity of 156.1 mA·h/g at 200 mA/g after 100 cycles,and a discharge capacity of 111.9 mA·h/g at 1.0 A/g even after 2300 cycles with the Coulombic efficiency of nearly 100%.  相似文献   

20.
《中国化学快报》2023,34(1):107443
Due to the abundant sodium reserves and high safety, sodium ion batteries (SIBs) are foreseen a promising future. While, hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages. However, the unsatisfactory initial coulombic efficiency (ICE) is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application. Herein, with spherical nano SiO2 as pore-forming agent, gelatin and polytetrafluoroethylene as carbon sources, a multi-porous carbon (MPC) material can be easily obtained via a co-pyrolysis method, by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases. As a result, the MPC anode exhibited remarkable ICE of 83% and a high rate capability (208 mAh/g at 5 A/g) when used in sodium-ion half cells. Additionally, coupling with Na3V2(PO4)3 as the cathode to assemble full cells, the as-fabricated MPC//NVP full cell delivered a good rate capability (146 mAh/g at 5 A/g) as well, implying a good application prospect the MPC anode has  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号