首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strong metal-support interactions (SMSI) have gained great attention in the heterogeneous catalysis field, but its negative role in regulating light-induced electron transfer is rarely explored. Herein, we describe how SMSI significantly restrains the activity of Ru/TiO2 in light-driven CO2 reduction by CH4 due to the photo-induced transfer of electrons from TiO2 to Ru. In contrast, on suppression of SMSI Ru/TiO2−H2 achieves a 46-fold CO2 conversion rate compared to Ru/TiO2. For Ru/TiO2−H2, a considerable number of photo-excited hot electrons from Ru nanoparticles (NPs) migrate to oxygen vacancies (OVs) and facilitate CO2 activation under illumination, simultaneously rendering Ruδ+ electron deficient and better able to accelerate CH4 decomposition. Consequently, photothermal catalysis over Ru/TiO2−H2 lowers the activation energy and overcomes the limitations of a purely thermal system. This work offers a novel strategy for designing efficient photothermal catalysts by regulating two-phase interactions.  相似文献   

2.
Strong metal–support interaction (SMSI) has gained great attention in the field of heterogeneous catalysis. However, whether single‐atom catalysts can exhibit SMSI remains unknown. Here, we demonstrate that SMSI can occur on TiO2‐supported Pt single atoms but at a much higher reduction temperature than that for Pt nanoparticles (NPs). Pt single atoms involved in SMSI are not covered by the TiO2 support nor do they sink into its subsurface. The suppression of CO adsorption on Pt single atoms stems from coordination saturation (18‐electron rule) rather than the physical coverage of Pt atoms by the support. Based on the new finding it is revealed that single atoms are the true active sites in the hydrogenation of 3‐nitrostyrene, while Pt NPs barely contribute to the activity since the NP sites are selectively encapsulated. The findings in this work provide a new approach to study the active sites by tuning SMSI.  相似文献   

3.
Strong metal–support interaction (SMSI) has gained great attention in the field of heterogeneous catalysis. However, whether single-atom catalysts can exhibit SMSI remains unknown. Here, we demonstrate that SMSI can occur on TiO2-supported Pt single atoms but at a much higher reduction temperature than that for Pt nanoparticles (NPs). Pt single atoms involved in SMSI are not covered by the TiO2 support nor do they sink into its subsurface. The suppression of CO adsorption on Pt single atoms stems from coordination saturation (18-electron rule) rather than the physical coverage of Pt atoms by the support. Based on the new finding it is revealed that single atoms are the true active sites in the hydrogenation of 3-nitrostyrene, while Pt NPs barely contribute to the activity since the NP sites are selectively encapsulated. The findings in this work provide a new approach to study the active sites by tuning SMSI.  相似文献   

4.
Inducing strong metal-support interaction (SMSI) has been a useful way to control the structure of surface active sites. The SMSI often causes the encapsulation of metal particles with an oxide layer. Herein, an amorphous ceria shell was formed on Cu nanoparticles under a mild gas condition with high activity and durability for surface reaction. Cu−Ce solid solution promoted the transfer of surface oxygen species, which induced the ceria shell formation on Cu nanoparticles. This catalyst was used for CO2 hydrogenation, selectively producing CO with high low-temperature activity and good durability for operation at high temperature. CO2 activation and H2 spillover could occur at low temperatures, enhancing the activity. The shell prevented the sintering, assuring durability. This catalyst was applied to a bench-scale reactor without loss in performance, resulting in high CO productivity in all temperature ranges.  相似文献   

5.
《中国化学快报》2020,31(9):2512-2515
Ru and Co are highly dispersed on the surface of TiO2 nanoparticles with an easy coprecipitation method to fabricate a novel Ru-based catalyst (Ru/Co-TiO2). The fabricated Ru/Co-TiO2 catalyst exhibits superior catalytic performance for promoting NaBH4 hydrolysis in alkaline medium, showing an impressive hydrogen generation rate per gram Ru as high as 172 L min−1 gRu-1, which is better than most of recently reported Ru-based catalysts. In addition, the fabricated Ru/Co-TiO2 catalyst also shows excellent durability in cycle use, with only 2.9% activity loss after being used for 5 cycles. These advantages make the developed Ru/Co-TiO2 catalyst a potential choice for promoting hydrogen generation from NaBH4 hydrolysis.  相似文献   

6.
The catalytic performances of supported gold nanoparticles depend critically on the nature of support. Here, we report the first evidence of strong metal-support interactions (SMSI) between gold nanoparticles and ZnO nanorods based on results of structural and spectroscopic characterization. The catalyst shows encapsulation of gold nanoparticles by ZnO and the electron transfer between gold and the support. Detailed characterizations of the interaction between Au nanoparticles and ZnO were done with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and FTIR study of adsorbed CO. The significance of the SMSI effect is further investigated by probing the efficiency of CO oxidation over the Au/ZnO-nanorod. In contrast to the classical reductive SMSI in the TiO(2) supported group VIII metals which appears after high temperature reduction in H(2) with electron transfer from the support to metals, the oxidative SMSI in Au/ZnO-nanorod system gives oxygen-induced burial and electron transfer from gold to support. In CO oxidation, we found that the oxidative SMSI state is associated with positively charged gold nanoparticles with strong effect on its catalytic activity before and after encapsulation. The oxidative SMSI can be reversed by hydrogen treatment to induce AuZn alloy formation, de-encapsulation, and electron transfer from support to Au. Our discovery of the SMSI effects in Au/ZnO nanorods gives new understandings of the interaction between gold and support and provides new way to control the interaction between gold and the support as well as catalytic activity.  相似文献   

7.
Nanostructured titanium dioxides were synthesized via various post-treatments of titanate nanofibers obtained from titanium precursors by hydrothermal reactions. The microstruc-tures of TiO2 and supported Ru/TiO2 catalysts were characterized with X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and nitrogen adsorption isotherms. The phase structure, particle size, morphology, and specific surface area were de-termined. The supported Ru catalysts were applied for the selective methanation of CO in a hydrogen-rich stream. The results indicated that the Ru catalyst supported on rutile and TiO2-B exhibited higher catalytic performance than the counterpart supported on anatase, which suggested the distinct interaction between Ru nanoparticles and TiO2 resulting from different crystalline phases and morphology.  相似文献   

8.
Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO2) medium. The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au. Compared with the corresponding monometallic catalyst, the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed); however, the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2, and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity. The effect of CO2 pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2, Pd-Au/TiO2, and Pd/TiO2 catalysts. It was assumed to be ascribed to the difference in the interactions between Au, Pd nanoparticles and CO2 under different CO2 pressures.  相似文献   

9.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}.  相似文献   

10.
Pt/TiO2 catalysts supported on ultradispersed rutile are prepared. The effect of strong metal-support interaction (SMSI) in these catalysts is more pronounced than in Pt/TiO2 catalysts with greater fractions of an anatase phase in the support. Mild oxidation of the rutile catalyst eliminates the SMSI effect.  相似文献   

11.
Strong metal–support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.  相似文献   

12.
The development of facile methodologies to afford robust supported metal nanocatalysts under mild conditions is highly desirable yet challenging, particularly via strong metal-support interactions (SMSI) construction. State-of-the-art approaches capable of generating SMSI encapsulation mainly focus on high temperature annealing in reductive/oxidative atmosphere. Herein, ultra-stable metal nanocatalysts based on SMSI construction were produced by leveraging the instantaneous high-energy input from ultrasonication under ambient conditions in H2O, which could rapidly afford abundant active intermediates, Ti3+ ions, and oxygen vacancies within the scaffolds to induce the SMSI overlayer formation. The encapsulation degree could be tuned and controlled via the reducibility of the solvents and the ultrasonication parameters. This facile and efficient approach could be further extended to diverse metal oxide supports and noble metal NPs leading to enhanced performance in hydrogenation reactions and CO2 conversion.  相似文献   

13.
Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance. Hence, searching for an efficiently heterogeneous catalyst with high stability and dispersion is one of the important targets of chemical technology. Here, we report a Ba-K/Ru-MC catalyst with Ru particle size of 1.5–2.5 nm semi-embedded in a mesoporous C matrix and with dual promoters of Ba and K that exhibits a higher activity than the supported Ba-Ru-K/MC catalyst, although both have similar metal particle sizes for ammonia synthesis. Further, the Ba-K/Ru-MC catalyst is more active than commercial fused Fe catalysts and supported Ru catalysts. Characterization techniques such as high-resolution transmission electron microscopy, N2 physisorption, CO chemisorption, and temperature-programmed reduction suggest that the Ru nanoparticles have strong interactions with the C matrix in Ba-K/Ru-MC, which may facilitate electron transport better than supported nanoparticles.  相似文献   

14.
Kazantsev  R. V.  Gaidai  N. A.  Nekrasov  N. V.  Tenchev  K.  Petrov  L.  Lapidus  A. L. 《Kinetics and Catalysis》2003,44(4):529-535
The kinetics and mechanism of benzene and toluene hydrogenation on a Pt/TiO2 catalyst were studied in steady-state and non-steady-state regimes in the presence or absence of strong metal–support interactions (SMSI). It was found that the kinetics and mechanism of the test reactions were independent of SMSI. The observed effect of a decrease in the catalytic activity in the SMSI state was due to structural changes in the active centers of the catalyst and to the presence of strongly bound hydrogen species on the surface; this was also supported by thermal-desorption data.  相似文献   

15.
Carbon nanotubes (CNTs) have been shown to modify some properties of nanomaterials and to modify chemical reactions confined inside their channels, which are formed by curved graphene layers. Here we studied ammonia synthesis over Ru as a probe reaction to understand the effect of the electron structure of CNTs on the confined metal particles and their catalytic activity. The catalyst with Ru nanoparticles dispersed almost exclusively on the exterior nanotube surface exhibits a higher activity than the CNT‐confined Ru, although both have a similar metal particle size. Characterization with TEM, N2 physisorption, H2 chemisorption, temperature‐programmed reduction, CO adsorption microcalorimetry, and first‐principles calculations suggests that the outside Ru exhibits a higher electron density than the inside Ru. As a result, the dissociative adsorption of N2, which is an electrophilic process and the rate‐determining step of ammonia synthesis, is more facile over the outside Ru than that over the inside one.  相似文献   

16.
Nano-titania doped with noble metals (Au/TiO2, Ag/TiO2, Pd/TiO2) has been synthesized by mild hydrolysis of the mixture of metal salts or complexes and titanium isopropoxide ((iPr-O)4Ti). After thermal decomposition of the obtained precursors, nanomaterials were formed. Morphological characterization of the nanomaterials was provided by scanning electron microscopy (SEM) and stereological analysis, determining the BET specific surface area, and BJH nanoporosity (pore volume, pore size). It has been found that the structure of nanomaterials (size of nanoparticles and agglomerates) depended strongly on the method of the (iPr-O)4Ti hydrolysis. A minor dependence on the kind of solvents and precursors of noble metals was observed. The presence of doping metal nanoparticles was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Nanomaterial phases were identified by X-ray diffraction (XRD). According to the XRD patterns, Ag/TiO2 and Pd/TiO2 products with doping metals in their oxidized form contain Ag-Ti and Pd-Ti phases. Peaks of the metal oxides Ag2O and PdO are absent in the XRD patterns. The average size of TiO2 nanoparticles is situated in the region of 20–60 nm, whereas metals are present as about 10–15 nm sized particles and fine nanoparticles.  相似文献   

17.
Two Au catalysts supported on TiO2 were prepared by impregnation method followed by sodium borohydride reduction or calcination in air (Au/TiO2-R and Au/TiO2-C, respectively). The 1 wt % Au/TiO2-R sample was found to be highly efficient for the oxidation of low concentrated formaldehyde at room temperature. A HCHO conversion of 98.5% was achieved with this catalyst, whereas the Au/TiO2-C sample showed almost no activity under the same conditions. Highly dispersed metallic Au nanoparticles with small size (∼3.5 nm) were identified in the 1 wt % Au/TiO2-R catalyst. A significant negative shift of Au4f peak in XPS spectra with respect to bulk metallic Au was observed for the 1 wt % Au/TiO2-R but no similar phenomena was found for the heat-treated catalyst. More Au nanoparticles and higher content of surface active oxygen were identified on the surface of the Au/TiO2-R in comparison with the Au/TiO2-C, suggesting that the Au/TiO2-R catalyst can enhance the amount of active sites and species involved in for HCHO oxidation. The reduction treatment by sodium borohydride promotes the formation of dispersed metallic Au nanoparticles with small size because it facilitates the electron transfer and increases the content of surface Au nanoparticles and activated oxygen. All these factors are responsible for a high activity of this catalyst in the oxidation of HCHO.  相似文献   

18.
 以二钛酸钾 (K2Ti2O5) 为前驱体, 通过离子交换和 800oC 焙烧制备了 TiO2晶须 (TiO2(800oC)), 并采用乙二醇胶体法, 在 TiO2(800oC) 样品上负载 1% Pt 纳米颗粒制成了 Pt/TiO2(800oC 催化剂. 采用 X 射线衍射、扫描电镜、透射电镜、X 荧光光谱和低温 N2 吸附-脱附等技术对催化剂进行了表征, 并考察了该催化剂光催化降解苯酚活性及稳定性. 结果表明, TiO2(800oC)样品为结晶度较高的纯锐钛矿 TiO2, 载 Pt 后催化活性提高到原来的 2.3 倍, 具有很高的单位比表面积活性. 催化剂经 10 次重复使用后, Pt 流失量仅为 6%, 活性为新鲜催化剂的 91%. 而低结晶度的纯锐钛矿或混晶的 TiO2 负载 Pt 催化剂的活性和稳定性均不及 Pt/TiO2(800oC).  相似文献   

19.
The increasing incidence of cancer all over the world demands new, effective and secure materials for treatment. In this paper, we propose Pt/TiO2 nanocomposite for cancer-cell treatment because noble metal nanoparticles are supposed to enhance the photocatalytic activity of TiO2 nanoparticles. To evaluate the cancer-cell killing effect of our Pt/TiO2 nanocomposite, TiO2 and Au/TiO2 nanoparticles are also introduced. The prepared Pt/TiO2 nanocomposite are characterized with transmission electron microscopy (TEM) and UV–vis adsorption spectra. Results of cell treatment indicate that Pt/TiO2 nanocomposite, as extremely stable metal–semiconductor nanomaterial, can exhibit a very high photodynamic efficiency under a mild ultraviolet radiation. And our Pt/TiO2 nanocomposite shows to be more effective in cancer-cell treatment than TiO2 and Au/TiO2 nanoparticles. As a result, Pt/TiO2 nanocomposite may be supposed to have a promising application for cancer-cell treatment.  相似文献   

20.
Cobalt doped titania nanoparticles were synthesized by sol-gel method using titanium(IV) isopropoxide and cobalt nitrate as precursors. X-Ray diffraction (XRD) results showed that titania and Co/TiO2 nanoparticles only include anatase phase. The framework substitution of Co in TiO2 nanoparticles was established by XRD, scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX) and Fourier transform infrared (FT-IR) techniques. Transmission electron microscopy (TEM) images confirmed the nanocrystalline nature of Co/TiO2. The increase of cobalt doping enhanced “red-shift” in the UV-Vis absorption spectra. The dopant suppresses the growth of TiO2 grains, agglomerates them and shifts the band absorption of TiO2 from ultraviolet (UV) to visible region. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. Although the photocatalytic activity of undoped TiO2 was found to be higher than that of Co/TiO2 under UV irradiation, the presence of 0.5% Co dopant in TiO2 resulted in a catalyst with the highest activity under visible irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号