首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
本文通过Ⅱ-Ⅵ族稀磁半导体超晶格ZnSe/Zn1-xMnxSe的光致发光谱的测量,对其应力效应进行了讨论。样品的组分x=0.2,0.3,0.4,测量温度为T=11 ̄300K。结果表明:由于应力效应,ZnSe/Zn1-xMnxSe超晶格中的激子能量随x值增加而发生红移。在相同组分下,不同阱、垒宽度比使应力的分布产生明显变化,从而影响超晶格中激子能量。实验与理论计算结果相一致。超晶格中光致发光峰随温度  相似文献   

2.
We perform first-principles based on the density function theory to investigate electronic and magnetic properties of 1T-HfS2 monolayer with biaxial tensile strain and compressive strain. The results show that HfS2 monolayer under strains doesn’t display magnetic properties. When the strain is 0%, the HfS2 monolayer presents an indirect band gap semiconductor with the band gap is about 1.252 eV. The band gap of HfS2 monolayer decreases quickly with increasing compressive strain and comes to zero when the compressive strain is above −7%, the HfS2 monolayer system turns from semiconductor to metal. While the band gap increases slowly with increasing tensile strain and comes to 1.814 eV when the tensile strain is 10%. By comparison, we find that the compressive strain is more effective in band engineering of pristine 1T-HfS2 monolayer than the tensile strain. And we notice that the extent of band gap variation is different under tensile strain. The change of band gap with strain from 1% to 5% is faster than that of the strain 6–10%. To speak of, the conduction band minimum (CBM) is all located at M point with different strains. While the valence band maximum (VBM) turns from Γ point to K point when the strain is equal to and more than 6%.  相似文献   

3.
ABSTRACT

The effects of biaxial strain on the electronic structure and the elastic and optical properties of monolayer CaI2 were studied using first-principles calculations. The two-dimensional (2D) equation of state for monolayer CaI2 as fit in a relative area of 80–120% is more accurate. The band gap can be tuned under strain and reached a maximum at a tensile strain of 4%. Under compressive strains, the absorption spectrum showed a significant red shift at higher strains. The static reflectance and static refractive index decreased in the strain range of ?10% to 10%.  相似文献   

4.
ZnO has long been considered as a promising candidate material for diluted magnetic semiconductors, owing to its theoretically predicted and experimentally observed above-room-temperature ferromagnetism and long spin-coherence time. In this brief perspective, recent progress in ZnO diluted magnetic semiconductors is reviewed with particular focus on three topics: (1) spin coherence in ZnO; (2) free-carrier type and concentration-dependent magnetic properties in ZnO; and (3) ferromagnetism in undoped and non-transition-metal-doped ZnO. Finally, current status and possible potential direction of research on ZnO diluted magnetic semiconductors are summarized in the concluding remarks.  相似文献   

5.
采用密度泛函理论第一性原理超软赝势的方法,计算了过渡金属与C共掺杂ZnO的磁学和光学性质. 计算结果表明,共掺杂均导致费米能级发生移动,掺杂体系共价性强弱发生变化,且共掺杂更有利于高居里温度铁磁性半导体的实现;为了进一步分析掺杂体系的磁学性质,研究了其铁磁态与反铁磁态的能量差、空间电荷和自旋密度分布.各种类型掺杂体系在高能区的光学性质与纯净ZnO几乎一致,而在低能区却存在较大差异,结合电子结构定性解释了光学性质的变化.  相似文献   

6.
侯清玉  曲灵丰  赵春旺 《物理学报》2016,65(5):57401-057401
与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.  相似文献   

7.
本文采用密度泛函理论系统的研究了二维单层金属卤化物CoX_2(X=Cl,Br,I)的结构稳定性、电子性质和磁性质.三种卤化物的束缚能分别是9.01、8.04和6.95 eV,表明Co原子和卤素原子间存在强相互作用.三种材料的能带结构都显示了间接带隙半导体特性.三种材料的总磁矩都是3 μ_B,主要来源于Co原子的磁矩.为了实现对材料物性的调控,我们考虑了双轴应变.发现压缩应变不仅可以显著增强铁磁态的稳定性,还可以实现体系从间接带隙半导体向直接带隙半导体的转变.  相似文献   

8.
We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from −10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at −2% strain, and the magnetic moment jumps into 1.623 μB at −4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at −7% strain. The Co-doped WSe2 can endure strain from −6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.  相似文献   

9.
Electronic and magnetic properties of Mn-doped WSe2 monolyer subject to isotropic strain are investigated using the first-principles methods based on the density functional theory. Our results indicate that Mn-doped WSe2 monolayer is a magnetic semiconductor nanomaterial with strong spontaneous magnetism without strain and the total magnetic moment of Mn-doped system is 1.038μB. We applied strain to Mn-doped WSe2 monolayer from -10% to 10%. The doped system transforms from magnetic semiconductor to half-metallic material from −10% to −2% compressive strain and from 2% to 6% tensile strain. The largest half-metallic gap is 0.450 eV at −2% compressive strain. The doped system shows metal property from 7% to 10%. Its maximum magnetic moment comes to 1.181μB at 6% tensile strain. However, the magnetic moment of system decreases to zero sharply when tensile strain arrived at 7%. Strain changes the redistribution of charges and arises to the magnetic effect. The coupling between the 3d orbital of Mn atom, 5d orbital of W atom and 4p orbital of Se atom is analyzed to explain the strong strain effect on the magnetic properties. Our studies predict Mn-doped WSe2 monolayers under strain to be candidates for thin dilute magnetic semiconductors, which is important for application in semiconductor spintronics.  相似文献   

10.
The future of the spintronic technology requires the development of magnetic semiconductor materials. Most research groups have focused on diluted magnetic semiconductors because of the promising theoretical predictions and initial results. In this work, the current experimental situation of ZnO based diluted magnetic semiconductors is presented. Recent results on unexpected ferromagnetic-like behaviour in different nanostructures are also revised, focusing on the magnetic properties of Au and ZnO nanoparticles capped with organic molecules. These experimental observations of magnetism in nanostructures without the typical magnetic atoms are discussed. The doubts around the intrinsic origin of ferromagnetism in diluted magnetic semiconductors along with the surprising magnetic properties in absence of the typical magnetic atoms of certain nanostructures should make us consider new approaches in the quest for room temperature magnetic semiconductors.  相似文献   

11.
Ce, Cu co-doped ZnO (Zn1−2xCexCuxO: x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) nanocrystals were synthesized by a microwave combustion method. These nanocrystals were investigated by using X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Cu co-doped ZnO were probed by first principle calculations. XRD results revealed that all the compositions are single crystalline. hexagonal wurtzite structure. The optical band gap of pure ZnO was found to be 3.22 eV, and it decreased from 3.15 to 3.10 eV with an increase in the concentration of Cu and Ce content. The morphologies of Ce and Cu co-doped ZnO samples confirmed the formation of nanocrystals with an average grain size ranging from 70 to 150 nm. The magnetization measurement results affirmed the antiferro and ferromagnetic state for Ce and Cu co-doped ZnO samples and this is in agreement with the first principles theoretical calculations.  相似文献   

12.
The previously published photoluminescence spectra of bulk germanium single crystals with orientations (100), (110), and (111) under different biaxial tensile strains have been investigated using the differential method proposed by the author for the analysis of luminescence spectra of semiconductors. An increase in the strain for all these orientations of the single crystals leads to a shift in the maxima of the differential spectra in the region of direct radiative transitions toward lower photon energies due to the narrowing of the germanium direct band gap. At the same time, the positions of the maxima of the differential spectra in the region of indirect radiative transitions remain almost unchanged. This indicates that the germanium indirect band gap does not depend on the tensile strains, at least for their values of ~0.2–0.3%.  相似文献   

13.
By employing a density functional theory plane-wave pseudopotential method, we investigated band gap reduction and magnetism as well as electronic structures of (Cu, S)-codoped ZnO. Our calculations indicated that Cu and/or S-doped ZnO can reduce the band gap of ZnO. The (Cu, S)-codoped ZnO has a large band gap reduction of 0.37 eV, two times larger than that in Cu-doped ZnO. S atom has no contribution for the total magnetic moment of (Cu, S)-codoped ZnO, whereas it plays a central role in spin-polarizing of both Cu and S dopants due to strong coupling between Cu 3d and S 3p states. This would offer a new strategy for designing narrow band gap devices with magnetism.  相似文献   

14.
通过选用乌洛托品作为络合剂,采用电化学沉积的方法成功地制备出钴掺杂的氧化锌薄膜。通过对样品的XRD表征,得出生长的样品为ZnO纤锌矿结构,并没有其他杂相峰,即没有出现分相;通过对样品XPS的分析显示Co离子在薄膜中以+2价的形式存在;为进一步验证Co2+离子进入ZnO的晶格,对掺杂不同Co2+浓度的样品进行PL谱的测量,从发光光谱上可以看出随着掺杂Co2+浓度的增加,带隙逐渐变窄,发光峰位红移,证明Co2+部分取代了Zn2+而进入了ZnO晶格中。  相似文献   

15.
Through the first principle calculation, electronic properties of monolayer MoS2 doped with single, double, triple and tetra-atoms of P, Cl, O, Se at the surface S site are discussed. Among the substitutional dopant, our calculation results show that when P atoms are doped on a monolayer MoS2, a shift in the Fermi energy into the valence band is observed, making the system p-type. Meanwhile, band gap gradually decreases as increasing the number of P atoms. On the contrary, Cl is identified as a suitable n-type dopant. It is observed that Cl for initial three dopant behaved as magnetic and afterwards returned to non-magnetic behavior. The band gap of the Cl doped system is also dwindling gradually. Finally, O and Se doped systems have little effect on electronic properties near band gap. Such doping method at the S site, and the TDOS and PDOSs of each doping system provide a detailed of understanding toward working mechanism of the doped and the intrinsic semiconductors. This doping model opens up an avenue for further clarification in the doping systems as well as other dopant using this method.  相似文献   

16.
Crystal Zn1−xMnxO magnetic semiconductors have been obtained by using a hydrothermal method for the first time at temperature of 703 K with substituent fraction ranging from x=0 to 0.04. X-ray diffraction and optical absorption measurements provide evidence for the locating at Zn site of Mn ion in ZnO crystals. The non-monotonic variation of band gap indicates the short-ranged interactions of sp-d electrons. However, no evidence of ferromagnetism is found in these systems down to T=2 K. The magnetization is found to be contributed from both free spins and spins associated with antiferromagnetic clusters. The antiferromagnetism is confirmed by fitting a Curie-Weiss function.  相似文献   

17.
Optical and magnetic studies on CuO nanoparticles prepared by a chemical route are reported and the effect of size variation on these properties is discussed. SEM images show that the nanoparticles are interlinked into microspheres with the cages containing visible nanoscale holes. Diffuse reflectance spectroscopy indicates a consistent red shift in the fundamental band gap (indirect band gap) from 1.23 to 1 eV as the size decreases from 29 to 11 nm. This observed red shift is attributed to the presence of defect states within the band gap. A clear blue shift is observed in the direct band gap of these nanoparticles presumably due to the quantum confinement effects. Air-annealed samples show a paramagnetic response whereas particles annealed in a reducing atmosphere show additionally a weak ferromagnetic component at room temperature. For both types of particles, the paramagnetic and ferromagnetic moments, respectively, increase with decreasing size. The role of oxygen vacancies is understood to relate to the generation of free carriers mediating ferromagnetism between Cu spins. AC susceptibility measurements show both the antiferromagnetic transitions of CuO including the one at 231 K which is associated with the onset of the spiral antiferromagnetic phase transition.  相似文献   

18.
Nanoparticles of Co and Ni codoped zinc oxide, Zn0.9Co0.1−xNixO (x=0.0, 0.03, 0.06 and 0.09), diluted magnetic semiconductors (DMSs) are synthesized by the sol-gel method at annealing temperature of 500 °C. X-ray diffraction (XRD) patterns confirm the single phase character of the samples with x=0.0 and 0.03. However, minor NiO secondary phase is detected in the samples with x=0.06 and 0.09. All of them possess the hexagonal wurtzite structure. There is no significant change in the lattice parameters due to variation of doping concentration. The average particle size is found to be 19.31-25.71 nm. FTIR and UV-vis spectroscopic results confirm the incorporation of the dopants into the ZnO lattice structure. Magnetization data reveal the presence of room temperature ferromagnetism (RTFM). The XRD patterns rule out the formation of secondary phase of either metallic Co cluster or CoO in the samples. Nevertheless, the secondary phases are a concern in any DMS system as a source of spurious magnetic signals. Therefore, we carried out the XPS studies from which the oxidation states of Co and Ni are found to be Co2+ and Ni2+, respectively. Moreover, XPS O 1s spectra show evidence of the presence of the oxygen vacancy in the ZnO matrix.  相似文献   

19.
胡格  胡军 《化学物理学报》2020,33(4):443-449
本文通过第一性原理计算方法研究了被第四B族过渡金属吸附原子(Cr,Mo,W)修饰的蓝磷单层的电子结构性质,发现Cr修饰的蓝磷单层为磁性半金属,而Mo或W修饰的蓝磷单层为半导体,其带隙均小于0.2 eV. 对Mo或W修饰的蓝磷单层施加双轴压应力使得带隙先闭合再打开,且在此过程中发生了能带反转的现象,说明Mo或W修饰的蓝磷单层发生了拓扑转变. Mo和W修饰的蓝磷单层的拓扑转变压应力分别为-5.75%和-4.25%,其拓扑绝缘带隙分别为94 meV和218 meV. 如此大的拓扑绝缘带隙意味着在较高温度条件下有可能在蓝磷单层中通过吸附过渡金属原子实现拓扑绝缘态.  相似文献   

20.
《Current Applied Physics》2014,14(5):772-777
Cu2−xTe QDs on ZnO nanoparticles were synthesized using a successive ionic layer absorption and reaction technique (SILAR) at room temperature. The as-synthesized QDs which were distributively deposited on ZnO nanoparticles surface were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction and high-resolution transmittance microscope (HR-TEM). It revealed that the average diameter of the QDs was ∼2 nm. The synthesized Cu2−xTe QDs were solely orthorhombic Cu1.44Te phase. The growth mechanism was supposed that it based on ions deposition. The energy gap of as-synthesized Cu2−xTe QDs was determined ∼1.1 eV and the smallest energy gap of 0.76 eV was obtained, equal to that of bulk material. Raman spectroscopy and FTIR were also used to study the Cu2−xTe QDs on ZnO nanoparticles. These characteristics suggest a promising implication for a potential broadband sensitizer of QDSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号