首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Macroporous viscoelastic poly(vinyl alcohol) (PVA) cryogels are prepared from aqueous concentrated (80–120 g/l) PVA solutions subjected to 1–5 cycles of cryogenic treatment (freezing at ?20°C for 19 h and subsequent thawing at a rate of 0.3°C/min). Shear moduli and fusion temperatures of corresponding samples are determined and the structure of thin sections is studied by optical microscopy with subsequent processing and analysis of images obtained. The previously described effect of a substantial increase in the rigidity and thermal stability of PVA cryogels resulted from the repeated freezing-thawing cycles is confirmed. The largest (jumpwise) changes in the physicochemical characteristics of such gels and their macroporous morphology take place after the second cycle of cryogenic treatment. Moreover, depending on the PVA concentration in the initial solution, the mean cross section of micropores increases by a factor of 2–3 and the total porosity of cryogel rises by a factor of 1.5–2; i.e., the imperfection of material increases. Nevertheless, this negative (from view-point of the integral properties of cryogel) effect is completely overpowered by processes of additional structuring, which result in the strengthening of polymer phase proceeding during the repeated freezing-thawing cycles.  相似文献   

2.
Macroporous filled and unfilled poly(vinyl alcohol) (PVA) cryogels are produced by cryogenic treatment (freezing at ?20°C for 12 h followed by thawing at a rate of 0.03°C/min) of mixtures of an aqueous PVA solution and a full-component poly(vinyl acetate) (PVAc) dispersion or its individual components. The values of the elasticity modulus and fusion temperature are determined for obtained samples; their microstructure is studied by light microscopy of thin sections. It is shown that the effects that are induced by the incorporation of PVAc dispersion into the macroporous matrix of the PVA cryogel are due to the presence of both a discrete phase, i.e., solid PVAc microparticles, and ingredients of the liquid phase of the PVAc dispersion, mainly, urea. Therewith, the dispersed particles themselves serve as a reinforcing filler, i.e., increase the rigidity and (to a lesser extent) heat endurance of the cryogel, while urea, which possesses chaotropic properties and hinders the intermolecular hydrogen bonding of PVA chains, reduces the rigidity and heat endurance of the composites. As a result, the total effect is determined by the competition of differently directed influences of these components of PVAc dispersion and depends on its concentration in the resulting filled cryogel. It is also shown that PVAc microparticles are mainly entrapped in the gel phase of the macroporous matrix and form necklacelike aggregates, the cross-sectional areas and lengths of which depend on the degree of composite filling.  相似文献   

3.
Macroporous viscoelastic poly(vinyl alcohol) (PVA) cryogels were prepared from aqueous PVA solutions containing additives (0–1.2 mol/l) of alkali metal chlorides (LiCl, NaCl, KCl, CsCl) by cryogenic treatment (freezing at −20°C for 12 h and subsequent thawing at a rate of 0.03°C/min). Shear moduli and fusion temperatures of corresponding samples were determined and the structure of thin sections was studied by optical microscopy with subsequent processing and analysis of images obtained. It was shown that the rigidity, heat endurance, and mean pore sizes of formed cryogels monotonically decrease with increasing content of chaotropic lithium chloride. In the case of other three salts, the dependences of rheological characteristics of cryogels on the concentration of low-molecular-weight electrolyte were extreme due to the competition between factors that promote and prevent PVA cryotropic gelation. At the same time, fusion temperatures of gel samples increased steadily with increasing content of these salts. Microscopic studies revealed substantial (by factor of two to three) decrease in macropore sizes even at low content of salt compared to mean cross sections of pores in cryogel containing no additive; morphometric analysis of obtained images makes it possible to reveal the linear correlations between the rheological characteristics of cryogels formed in the presence of LiCl and the sizes of their macropores.  相似文献   

4.
Complex macroporous poly(vinyl alcohol) (PVA) cryogels have been obtained by cryogenic treatment (freezing at–20°C for 12 h followed by defrosting at a rate of 0.03°C/min) of PVA–chitosan hydrochloride mixed solutions. The subsequent alkaline treatment of the cryogels has resulted in the transformation of the water-soluble salt form of chitosan into its insoluble basic form, which coagulates inside the bulk of the continuous phase of PVA cryogel into small particles with sizes of 2–5 µm. In the resulting composite cryogels, these particles play the role of an “active” filler, which increases the rigidity and heat endurance of the gel material. It has been shown that the sorption capacity of such chitosan particles entrapped into the bulk of composite cryogels with respect of bivalent copper ions is noticeably higher than the sorption capacity of ground chitosan particles incorporated as a discrete filler into the continuous phase PVA cryogels. The study of the properties of PVA–chitosan hydrochloride mixed solutions revealed that these polymers are, to a large extent, compatible with one another in a common solvent at a low ionic strength. Therefore, liquidliquid phase separation of these systems due to the thermodynamic incompatibility of macromolecules of different natures is observed only upon increasing the ionic strength by adding a low-molecular-mass salt (NaCl, 0.15 mol/L) to the solution.  相似文献   

5.
Surfactant-containing poly(vinyl alcohol) (PVA) cryogels have been prepared by drying and reswelling hydrogel patches, previously obtained by the freeze/thaw procedure, in decyltrimethylammonium bromide (C10TAB) aqueous solutions. The microstructural and diffusive properties of the resulting material have been characterized by a combined experimental strategy. Gravimetric measurements show that the cryogel maximum swelling is not affected by the surfactant. The surfactant concentration within the cryogel, measured by ion chromatography, is the same as that in the rehydrating surfactant solution. Electron paramagnetic resonance (EPR) spin-probe and small-angle neutron scattering (SANS) measurements show that surfactant self-aggregation in the gel is similar to that in water, occurring at the same critical concentration and resulting in the formation of micellar aggregates whose structure is not affected by the cryogel polymeric scaffold. However, both the micelle intradiffusion coefficients, measured by PGSE-NMR, and the spin-probe correlation times, measured by EPR, indicate that dynamic processes in the hydrogel are much slower than in bulk water. A quantitative analysis of these results suggests that the cryogel polymer-poor domains, in which surfactant molecules are solubilized, have an average dimension of approximately 0.1 microm. Interestingly the experimental data also show that the polymer-poor phase contains more polymer than expected, suggesting that the spinodal decomposition, which occurs during the freezing step of cryogel preparation, is not complete or prevented by ice formation.  相似文献   

6.
Cryogenic treatment (freezing at −20°C for 12 h followed by defrosting at a rate of 0.03°C/min) of decane, dodecane, or tetradecane emulsions in a poly(vinyl alcohol) solution (80 g/l) is employed to prepare composite cryogels containing microdroplets of liquid hydrophobic fillers entrapped into a macroporous hydrogel matrix. The effects of the type of a hydrocarbon, the degree of filling, and the addition of a surfactant (decaethylene glycol cetyl ether) on the physicomechanical properties, heat endurance, and morphology of the composites are studied. It is shown that, an increase in the content of liquid hydrophobic fillers within some range of their volume fraction enhances the rigidity of corresponding cryogels. Incorporation of the nonionic surfactant into the initial emulsions results in a complex dependence of the rigidity of the resulting composite cryogels on surfactant concentration and variations in the morphology of pores in the gel phase. At the same time, the heat endurance of all examined composite cryogels weakly depends on the type and concentration of the hydrocarbon fillers, as well as the presence of surfactant additives.  相似文献   

7.
Double-stranded (ds) DNA from salmon testes has been incorporated into PVA hydrogels obtained by a technique of repeated freezing and thawing. The cryogels obtained are free of potential toxic species like chemical cross-linkers, and consequently, they can be used in pharmaceutical or medical applications. These cryogels show a good mechanical resistance and a white and opaque appearance caused by a heterogeneous porous structure. Encapsulated DNA molecules can be in a compacted or an extended conformation in the PVA matrix and can be controlled by tailoring the degree of crystallinity of the PVA network; this is supported by fluorescence microscopy and UV and FTIR spectroscopic studies. The two forms of encapsulated DNA were observed for different types of matrixes: an extended one in a more crystalline network and a globular one in a more amorphous one. Different associations of base pairs have also been observed. PVA cryogel crystallinity could be tailored by the cryogel contact with different salt solutions. Cryogel surface (scanning electron microscopy) and bulk morphology (porosimetry), swelling, DNA retention, and delivery kinetics have also been studied. All these investigations clearly show strong interactions between PVA and DNA.  相似文献   

8.
Stimuli-responsive liquid foams and bubbles are systems for which the stability, structure, shape, and movement can be controlled by the application of stimuli. The foam stability can be modified by a stimulus which can change solution condition (pH, temperature, and ionic strength) or with the application of an external field (light and magnetic). Different foam stabilizers have been described in the literature to design these responsive foams systems ranging from surfactants, peptides, polymers, soft polymer particles, surfactants self-assembly, crystalline particles, emulsion droplets, and solid particles. This review aims to cover the recent advances of the design of stimuli-responsive liquid foams and their applications. Responsive liquid foams are attractive in textile coloring process, biomedical application, washing, and material recovery processes.  相似文献   

9.
The structural transformations occurring in initially homogeneous aqueous solutions of poly(vinyl alcohol) (PVA) through application of freezing (-13 degrees C) and thawing (20 degrees C) cycles is investigated by time resolving small-angle neutron scattering (SANS). These measurements indicate that formation of gels of complex hierarchical structure arises from occurrence of different elementary processes, involving different length and time scales. The fastest process that could be detected by our measurements during the first cryotropic treatment consists of the crystallization of the solvent. However, solvent crystallization is incomplete, and an unfrozen liquid microphase more concentrated in PVA than the initial solution is also formed. Crystallization of PVA takes place inside the unfrozen liquid microphase and is slowed down because of formation of a microgel fraction. Water crystallization takes place in the early 10 min of the treatment of the solution at subzero temperatures, and although below 0 degrees C the PVA solutions used for preparation of cryogels should be below the spinodal curve, occurrence of liquid-liquid phase separation could not be detected in our experiments. Upon thawing, ice crystals melt, and transparent gels are obtained that become opaque in approximately 200 min, due to a slow and progressive increase of the size of microheterogeneities (dilute and dense regions) imprinted during the fast freezing by the crystallization of water. During the permanence of these gels at room temperature (for hours), the presence of a high content of water (higher than 85% by mass) prevents further crystallization of PVA. Crystallization of PVA, in turn, is resumed by freezing the gels at subzero temperatures, after water crystallization and consequent formation of an unfrozen microphase. The kinetic parameters of PVA crystallization during the permanence of these gels at subzero temperatures are the same shown by PVA during the first freezing step of the solutions.  相似文献   

10.
Based on aqueous poly(vinyl alcohol) (PVA) solutions with different content of polymer having different molecular masses and chain tacticity, macroporous viscoelastic gels (PVA cryogels) are prepared in various regimes of freezing-storage in a frozen state-thawing. Shear modulus and fusion temperature of corresponding samples are measured; the structure of thin sections is studied by optical microscopy and the images are processed and analyzed. It is shown that the rigidity and heat endurance of cryogels rise with an increase in the concentration of initial PVA solution and a decrease in the rate of thawing. The influence of the temperature of cryogenic treatment and the PVA molecular mass has an extreme character. At the same time, the effect of the main parameters of cryotropic gelation on the macroporous morphology of PVA cryogels is manifested in the form of more complex dependences because of its multiple-factor character. Therefore, distinct structure-property correlations are not observed in many cases. Cluster analysis of the morphometric characteristics of cryogels in comparison with data on their rigidity makes it possible to classify these systems.  相似文献   

11.
The present paper discusses synthesis, characterization, and blood compatibility studies of macroporous cryogels of PVA and starch. Biocompatible spongy porous hydrogels of polyvinyl alcohol–starch have been synthesized by repeated freezing–thawing methods and characterized by Infra red (FTIR) and environmental scanning electron microscopy (ESEM) techniques, respectively, to gain insights for structural and morphological features. The FTIR analysis of prepared cryogels indicated that starch was introduced into the network of cryogel possibly via formation of hydrogen bonds between the PVA and starch clusters. The “cryogels” were evaluated for their water uptake potentials and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The hydrogels were also swollen in salt solutions and various simulated biological fluids. The biocompatibility of the prepared cryogels was judged by in vitro methods of blood–clot formation viz. percent haemolysis and protein (BSA) adsorption. The cryogels were also studied for their pores morphology and percent porosity and the effect of chemical composition on the extent of porosity was also investigated.  相似文献   

12.
The multicomponent self-diffusion of the polyvinyl alcohol (PVA) cryogels prepared by a freezing-thawing treatment of aqueous and water-DMSO solutions of PVA has been studied with the NMR FT-PGSE method. The temperature dependencies of the self-diffusion coefficients, Ds, for the PVA chains have a maximum at 45 degrees C due to the syneresis of cryogels. They are quite different from the monotonous increase of Ds for the aqueous solutions of PVA. Evaluated apparent activation energies, Ea, of the self-diffusion for the PVA chains in the PVA solutions and cryogels in D2O are practically the same and equal 22-24 kJ/mol below the crucial point. The proton spin-lattice relaxation times, T1, of the PVA chain also coincide with one another for solutions and cryogels. This means that molecular packing in cryogels depends mainly on the dimensions of the ice and polymer microcrystallites formed by freezing the solution. Above the crucial point polymer compartments become firmer, and the chain mobility somewhat reduces. The strength of cryogels also increases along with growing the DMSO contents and decreases by the BSA addition. For estimation of the cryogel morphology, effects of the restricted diffusion of both the water and PVA in a q-space have been taken into account. By the introduction of DMSO to cryogels the solvent filled pores become smaller, and channels become much shorter. The diameter of the PVA filaments is similar to those for all the cryogels, but the length of filaments with D2O is twice that for cryogels with a mixed solvent. Entrapment of BSA in the cryogel matrix by preparation leads to the increase of an average diameter of the water filled pores and destroys molecular packing the cryogel. Copyright 1999 Academic Press.  相似文献   

13.
Nonequilibrium interfacial layers formed by competitive adsorption of beta-lactoglobulin and the nonionic triblock copolymer PEO99-PPO65-PEO99 (F127) to the air-water interface were investigated in order to explain the influence of polymeric surfactants on protein film surface rheology and foam stability. Surface dilatational and shear rheological methods, surface tension measurements, dynamic thin-film measurements, diffusion measurements (from fluorescence recovery after photo bleaching), and determinations of foam stability were used as methods. The high surface viscoelasticity, both the shear and dilatational, of the protein films was significantly reduced by coadsorption of polymeric surfactant. The drainage rate of single thin films, in the presence of beta-lactoglobulin, increased with the amount of added F127, but equilibrium F127 films were found to be thicker than beta-lactoglobulin films, even at low concentration of the polymeric surfactant. It is concluded that the effect of the nonionic triblock copolymer on the interfacial rheology of beta-lactoglobulin layers is similar to that of low molecular weight surfactants. They differ however in that F127 increases the thickness of thin liquid films. In addition, the significant destabilizing effect of low molecular weight surfactants on protein foams is not found in the investigated system. This is explained as due to long-range steric forces starting to stabilize the foam films at low concentrations of F127.  相似文献   

14.
Foams stabilized by nonionic surfactants are usually moderately stable due to high drainage rate and intense bubble coalescence and coarsening. This study aimed to investigate comparatively the foam properties of aliphatic alcohols (methyl isobutyl carbinol (MIBC) and 2-octanol) and polypropylene glycol (PPG400). Experiments were conducted using the FoamScan method at various surfactant concentrations and gas flow rates where the foam volume, liquid content of foam and foam half-life were determined. The results showed that both foamability and foam stability of surfactant solution increased with increasing gas flow rate and surfactant concentration for all tested surfactants. PPG400 was an unusually strong surfactant having the largest surface activity compared with MIBC and 2-octanol, which exhibited the maximum foaming performance and foam stability at all tested gas flow rates and concentrations. The present study suggested that foam properties depended primarily on the type of surfactant and its concentration and secondarily on the gas flow rate. In addition, properties of interface are closely related to that of foam, which is a significant point if one wants to produce foams for specific applications.  相似文献   

15.
Specific features of the polyelectrolyte behavior of weakly charged common gels and cryogels of copolymers of polyacrylamide and poly(N-isopropylacrylamide) with sodium acrylamido-2-methyl-1-propyl sulfonate are investigated. The cryogels are synthesized in frozen solutions at ?15°C. It is shown that the polyelectrolyte swelling is significantly weaker in the case of cryogels than that in the case of gels synthesized in solutions. For thermosensitive gels with isopropylacrylamide groups, collapse occurs during heating. Charging of a common gel leads to a noticeable (18°C) increase in the transition temperature. For a cryogel, this growth is 3°C. During the interaction with cetylpyridinium chloride, the gel contraction is much more pronounced for common weakly charged gels. At the same time, walls of pores of a collapsed cryogel contain a smaller amount of the solvent. Isotherms of the adsorption of a cationic surfactant by anionic common gels and cryogels differ insignificantly. Model gels synthesized in concentrated acrylamide solutions exhibit very weak polyelectrolyte swelling, similar to that of cryogels. The behavior of cryogels is explained by a very high local concentration of crosslinks due to a strong entanglement of polymer chains.  相似文献   

16.
The fluorescence mode confocal laser scanning microscopy (CLSM) is introduced as an alternative method to investigate the bulk structure of poly(vinyl alcohol) (PVA) hydrogel. Investigations of the bulk structure of hydrogel samples, prepared by freezing and controlled thawing of aqueous PVA solutions followed by fluorochrome conjugation, were possible in the native state because with this technique water does not need to be removed prior to examination. This is of advantage to other methods, such as scanning electron microscopy, requiring dehydration by critical-point drying or freeze-etching, because both may result in a significant alteration of the gel structure. CLSM images of the hydrogel bulk structure were taken at several successive intervals from the surface into the hydrogel (up to 60 μm) without freeze-fracturing or cutting the sample. Detailed morphological characterization is achievable by superimposing series of images taken at successive intervals and by magnifying special regions of interest. Images of hydrogel bulk structures revealed a continuous, three-dimensional network that originates from phase-separation (spinodal decomposition) during the freezing period. The pore or mesh size in the cryogel increased, from about 2–7 μm, with decreasing PVA concentration. The surface layer was only a few microns thick, and the bulk structure underneath showed neither porosity gradients nor structural orientations. Received: 29 April 2000/Accepted: 18 August 2000  相似文献   

17.
The influence of the vapors ofn-amyl orn-decyl alcohol on the stability of single thin liquid films, single bubbles, and foam columns was determined. It was found that the presence of surfactant vapors lowered the stability of foams and single foam films. The mechanism of the destabilizing action of the surfactant vapors on wet, dynamic foams under dynamic conditions is discussed. It is shown that the destabilizing action of the surfactant vapors is a further indication that surface elasticity forces are the main factor determining stability of wet, dynamic foams.  相似文献   

18.
The degree of crystallinity of poly(vinyl alcohol) in cryogels obtained by single freezing at–20°С followed by thawing of 13% aqueous solutions of the polymer bearing dissolved NaCl, KCl, CsCl, KBr, and KI in the concentration of 0.7 mol/kg is determined by attenuated total reflectance Fourier transform IR spectroscopy. It is established that the addition of NaCl, KCl, and CsCl to the poly(vinyl alcohol) solution leads to a substantial increase (by 1.5–1.7 times) in the degree of crystallinity in the cryogel prepared from this solution. The effect of KCl, KBr, and KI on the degree of crystallinity strongly depends on the salt anion. The replacement of the Cl anion by the larger Br anion reduces dramatically the crystallizing effect of the salt, while the even larger I anion, in contrast, reduces rather than increases the degree of crystallinity relative to that of the cryogel without a salt. The effect of the salts on the crystallinity of poly(vinyl alcohol) cryogels is explained by the simultaneous action of two processes. One of them facilitates crystallization and consists in the strengthening of dehydration of poly(vinyl alcohol) owing to competition between the polymer molecules and the salt ions for the liquid water molecules during its freezing. The other process hampers crystallization and is connected with a reduction in the water freezing point under action of the salt ions.  相似文献   

19.
The synergism and foaming behavior of a mixed surfactant system consisting of a nonionic surfactant (polyethoxylated alkyl ether C(n)E(m)) and a fatty acid soap (sodium oleate) were studied. The micellar interaction parameter (the beta-parameter) was determined from the cmc following the approach of Rubingh's regular solution theory. For both the C(12)E(6)/sodium oleate and the C(14)E(6)/sodium oleate mixtures, the results indicate a fairly strong attractive interaction (negative beta-values), which were in agreement with previous data reported for other nonionic/anionic surfactant systems. The characteristics of the foam produced from the surfactants were evaluated using a glass column equipped with a series of electrodes measuring the conductance of the foam, which enabled the water content of the foam to be determined. From these measurements, since the total foam volume was almost the same for all concentrations and surfactants, we compared the amount of liquid in the foam produced under dynamic foaming and the ability of the foam to entrain the liquid after the airflow was switched-off (static foam stability). The amount of liquid in the foam 100 s after the air was switched-off followed the order NaOl > C(12)E(6) > C(14)E(6). Also, the mixtures had the same foam volumes as the pure surfactants at the same concentration. However, both mixtures had higher concentrations of liquid in the foam when the mole fraction of the nonionic surfactant in the mixed surfactant system was greater than about >0.3 in the solution.  相似文献   

20.
Poly(vinyl alcohol) (PVA) cryogels (PVACGs) are obtained and studied. The PVACGs are formed by freezing–defrosting of polymer solutions in dimethyl sulfoxide (DMSO) or its mixtures with one of the first members of the series low-molecular-mass aliphatic alcohols (methanol, ethanol, n-propanol, and n-butanol). PVA content in these solutions is 100 g/L, while the concentration of an aliphatic alcohol is varied in a range of 0.44–2.55 mol/L depending on its nature. The polymer solutions are subjected to the cryogenic treatment at temperatures 30, 40, or 50°C lower than the crystallization temperature of DMSO (+18.4°C). The frozen samples are defrosted at a heating rate of 0.03°C/min. It is shown that, in a certain range of lowmolecular-mass alcohol content in an initial system, its cryogenic treatment yields coarse-pored heterophase cryogels that have higher rigidity and heat endurance than those of DMSO–PVA cryogels. It has been shown that polymer cryoconcentration and phase separation play important roles in the formation of a cellular microstructure and an increase in the rigidity and heat endurance of PVACGs obtained in the presence of low-molecular-mass alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号