首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The distribution of proteins and surfactants at fluid interfaces (air–water and oil–water) is determined by the competitive adsorption between the two types of emulsifiers and by the nature of the protein–surfactant interactions, both at the interface and in the bulk phase, with a pronounced impact on the interfacial rheological properties of these systems. Therefore, the interfacial rheology is of practical importance for food dispersion (emulsion or foam) formulation, texture, and stability. In this review, the existence of protein–surfactant interactions, the mechanical behaviour and/or the composition of emulsifiers at the interface are indirectly determined by interfacial rheology of the mixed films. The effect on the interfacial rheology of protein–surfactant mixed films of the protein, the surfactant, the interface and bulk compositions, the method of formation of the interfacial film, the interactions between film forming components, and the displacement of protein by surfactant have been analysed. The last section tries to understand the role of interfacial rheology of protein–surfactant mixed films on food dispersion formation and stability. The emphasis of the present review is on the interfacial dilatational rheology.  相似文献   

2.
The foaming properties and the dilatational rheology of systems containing purified sucrose caprylate (SM800), caprate (SM1000), laurate (SM1200) and palmitate (SM1600) have been studied. Addition of beta-lactoglobulin (beta-lg) at a low concentration (0.050 wt.%) can aid the foam formation in the cases, where the surfactant concentration is insufficient to support foam formation. However, foams where both species co-existed exhibited poor stability. beta-lg was found to affect the dilatational properties of surfactant films even at low concentrations. It is thought that this could be related to the effect of the protein on the adsorption-desorption relaxation mechanism, or to the possible formation of a protein-surfactant complex in the bulk. The age of the protein film was also found to affect the kinetics of protein displacement by SM1000, as monitored by the change in the dilatational properties (Langmuir trough technique) and the relative reflectivity of the interface (Brewster angle microscopy) with time. An insoluble monolayer of sucrose stearate (Suc18) and beta-lg was also studied and it was found that the presence of small amounts of Suc18 in the protein film lead to a reduction of the interfacial elasticity. This is believed to be due to the disruption of the protein network. A possible mechanism could involve the obstruction of the hydrogen-bond intermolecular protein association by the strongly hydrated sucrose headgroup or the obstruction of the protein-protein hydrophobic interactions by the formation of an interfacial protein-surfactant complex.  相似文献   

3.
The effect on β‐lactoglobulin foamability and foam stability of the poly(ethylene oxide)‐poly(propylene oxide) block copolymers F127 (PEO99‐PPO65‐PEO99), molecular weight 12500 g/mol, and P85 (PEO26‐PPO39‐PEO26), molecular weight 4600 g/mol, has been investigated at constant protein concentration, 10 µM (0.2 mg/L), and varying block copolymer concentrations, ranging from 0.02 to 1600 µM. Foam was generated by means of air sparging and the foam volume and liquid volume of the foam were measured for one hour. It was found that foam stabilized by F127 or P85 in the concentration range 20–1600 µM contained a larger liquid volume initially than pure β‐lactoglobulin foam. Furthermore, β‐lactoglobulin foamability was only marginally affected by the presence of F127, while it was reduced in an interval of low P85 concentrations. The protein foam stability was retained in the presence of the larger polymer F127, whereas P85 largely reduced the stability, indicating that the size of the polymeric surfactant is important. The results are discussed in relation to surface rheological properties and forces acting across foam films. Steric repulsion generated between the surfaces of foam films is suggested to be the main stabilizing factor in dry foam containing F127. The instability of the mixed β‐lactoglobulin/P85 system is suggested to be caused by two effects. First, there are incompatible stabilization mechanisms of block copolymer and protein, as supported by previous surface rheological data. Second, there is a reduced importance of long‐range steric repulsion when P85 is added, compared to the case where F127 and β‐lactoglobulin are mixed.  相似文献   

4.
The solution behavior of the polymeric surfactant Pluronic F127 (PEO(99)PPO(65)PEO(99)) and its adsorption behavior on aqueous-silica and aqueous-air interfaces, as well as the disjoining pressure isotherms of asymmetric films (silica/aqueous film/air) containing F127, are studied. The interfacial properties of adsorbed F127 layers (the adsorbed amount Gamma and the thickness h) as well as the aqueous wetting film properties [film thickness (h) and refractive indexes] were studied via ellipsometry. The solution properties of F127 were investigated using surface tensiometry and light scattering. The interactions between the air-water and silica-water interfaces were measured with a thin film pressure balance technique (TFB) and interpreted in terms of disjoining pressure as a function of the film thickness. The relations between the behaviors of the asymmetric films, adsorption at aqueous air, and aqueous silica interfaces and the solution behavior of the polymeric surfactant are discussed. Special attention is paid to the influence of the concentrations of F127 and NaCl. Addition of electrolyte lowers the critical micelle concentration, diminishes adsorption on silica, and increases the thickness of the asymmetric film.  相似文献   

5.
Foam generated by sparging of aqueous solutions of the block copolymers P85 (PEO26‐PPO39‐PEO26), F88 (PEO103‐PPO40‐PEO103), F127 (PEO99‐PPO65‐PEO99), and L64 (PEO13‐PPO30‐PEO13), has been characterized by foam volume measurements. Uniform wet foam formed, which, after drainage of the major part of the liquid, transformed to polyhedral dry foam. Conductance jumps across the foam column indicated that structural changes occur at a certain liquid fraction. The dry foams of P85 were less stable than those of F88 and F127. The latter copolymers showed similar foam stability over a period of one hour. The L64 foam was very unstable. It is suggested that the stability of the dry foams is determined by the resistance to rupture of the foam films. Foam stability is discussed in relation to earlier studies on surface rheology and to the thickness of thin foam films. A general relationship for all PEOx‐PPOy‐PEOx block copolymers between the dilatational modulus and the foam stability could not be found. However, the ability to form thick adsorption layers, accompanied by steric repulsive forces across foam films, appears to be a general foam‐stabilizing factor. Surface diffusion coefficients of a fluorescent probe in single‐block copolymers foam films are also reported for a brief discussion on Gibbs‐Marangoni stabilization.  相似文献   

6.
The effects of a control blocking of free cystein by N-ethylmaleimide on the interfacial behavior (kinetics of adsorption at the air/water interface, rheology of the interfacial layer) as well as on the foaming properties (density, stability) of beta-lactoglobulin were investigated. Compared to native beta-lactoglobulin (unmodified beta-lactoglobulin), sulfydryl-modified beta-lactoglobulin exhibited higher surface hydrophobicity, adsorbed faster at the air/water interface, had the capability to develop rapidly an interfacial layer with high shear elastic constant but exhibited a considerably lower shear elastic constant plateau value. Moreover, sulfydryl-modified beta-lactoglobulin exhibited better foaming properties especially regarding the short-term foam stability suggesting that the initial rheology of the interfacial film is at least as much important for the general mechanism of foam stabilization as the potential viscoelasticity the interfacial film could reach on aging.  相似文献   

7.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   

8.
A simple and elegant method based on steady-state fluorescence spectral measurement is demonstrated to study the interaction mechanism of copolymers and ionic surfactants with a suitable selection of fluorescent probe and also its general applicability in studying other systems. Three different concentration regions have been indicated from the changes in full width at half-maximum of the emission spectra and fluorescence intensity of coumarin 153 with the molar ratio of ionic surfactant to triblock copolymer (n). At low n values, copolymer-surfactant complexes are basically copolymer-rich micelles with few surfactant molecules, and at very high n values, copolymer-rich micelles are destroyed and surfactant-rich micelles with free copolymer monomers are formed. It has been observed that, in the intermediate surfactant concentration region, the transformation of a dominantly copolymer-rich complex to a mainly surfactant-rich complex can be either gradual incorporation of surfactants into the copolymer-rich micelles with freeing of copolymer units until surfactant-rich micelles are formed (type I) or simultaneous buildup of surfactant-rich micelles together with the destruction of copolymer-rich micelles (type II). The interaction mechanism for nonionic copolymers (P123 and F127) with ionic surfactants (SDS and CTAC) is mainly type II, but at higher copolymer concentrations interaction via the type I mechanism also operates. However, it is dominantly the type I mechanism that operates for common nonionic (TX100) and ionic surfactants.  相似文献   

9.
Linear stability analysis for a film on a solid surface with a viscoelastic air-liquid interface is presented. The interfacial dilatational and shear viscoelastic properties were described by Maxwell models. Dilatational and shear interfacial elasticity and viscosity were shown to improve film stability. When the interfacial rheological properties are extremely large or small, the maximum perturbation growth coefficient is shown to reduce to those for immobile and mobile interfaces respectively. Calculated values of maximum growth coefficient for thin film stabilized by 0.5% beta-lactoglobulin approached those of mobile films for thick (>2000 nm) and those for immobile films for thin (<100 nm) films respectively with the values lying between the two limits for intermediate film thicknesses.  相似文献   

10.
This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose.  相似文献   

11.
The competitive displacement of a model protein (beta-lactoglobulin) by bile salts from air-water and oil-water interfaces is investigated in vitro under model duodenal digestion conditions. The aim is to understand this process so that interfaces can be designed to control lipid digestion thus improving the nutritional impact of foods. Duodenal digestion has been simulated using a simplified biological system and the protein displacement process monitored by interfacial measurements and atomic force microscopy (AFM). First, the properties of beta-lactoglobulin adsorbed layers at the air-water and the olive oil-water interfaces were analyzed by interfacial tension techniques under physiological conditions (pH 7, 0.15 M NaCl, 10 mM CaCl2, 37 degrees C). The protein film had a lower dilatational modulus (hence formed a weaker network) at the olive oil-water interface compared to the air-water interface. Addition of bile salt (BS) severely decreased the dilatational modulus of the adsorbed beta-lactoglobulin film at both the air-water and olive oil-water interfaces. The data suggest that the bile salts penetrate into, weaken, and break up the interfacial beta-lactoglobulin networks. AFM images of the displacement of spread beta-lactoglobulin at the air-water and the olive oil-water interfaces suggest that displacement occurs via an orogenic mechanism and that the bile salts can almost completely displace the intact protein network under duodenal conditions. Although the bile salts are ionic, the ionic strength is sufficiently high to screen the charge allowing surfactant domain nucleation and growth to occur resulting in displacement. The morphology of the protein networks during displacement is different from those found when conventional surfactants were used, suggesting that the molecular structure of the surfactant is important for the displacement process. The studies also suggest that the nature of the oil phase is important in controlling protein unfolding and interaction at the interface. This in turn affects the strength of the protein network and the ability to resist displacement by surfactants.  相似文献   

12.
The self-organization process of polysaccharide alginate with different cationic surfactants at the water-air interface was investigated over a wide concentration regime. The changes of surface properties determined by surface tension measurements, surface rheology, and X-ray reflectivity are correlated with changes of bulk properties measured by turbidity, light scattering, and zeta potential measurements. We demonstrate that the interactions between the alginate and cationic surfactants result in significant changes of bulk and interfacial properties. The results of surface shear experiments point to the existence of highly viscoelastic interfacial films. In combination with X-ray reflectivity, we demonstrate that these rheological features are related to polymer-surfactant associations at the interface. In the regime of high surfactant concentrations, we observed the existence of multilayer structures.  相似文献   

13.
The shear and dilatational rheology of condensed interfacial layers of the water-insoluble surfactant sorbitan tristearate at the air/water interface is investigated. A new interfacial shear rheometer allows measurements in both stress- and strain-controlled modes, providing comprehensive interfacial rheological information such as the interfacial dynamic shear moduli, the creep response to a stress pulse, the stress relaxation response to a strain step, or steady shear curves. Our experiments show that the interfacial films are both viscoelastic and brittle in nature and subject to fracture at small deformations, as was supported by in-situ Brewster angle microscopy performed during the rheological experiments. Although any large-deformation test is destructive to the sample, it is still possible to study the linear viscoelastic regime if the deformations involved are controlled carefully. Complementary results for the dilatational rheology in area step compression/expansion experiments are reported. The dilatational behavior is predominantly elastic throughout the frequency spectrum measured, whereas the layers exhibit generalized Maxwell behavior in shear mode within a deformation frequency regime as narrow as two decades, indicating the presence of additional relaxation mechanisms in shear as opposed to expansion/compression. If the transient rheological response from stress relaxation experiments is considered, then the data can be described well with a stretched exponential model both in the shear and dilatational deformations.  相似文献   

14.
Dilute mixed solutions of non-surface active anionic polymers (polyacrylamide and polystyrene sulfonate, xanthan) and various surfactants have been studied with several methods: surface tension, ellipsometry, X-ray and neutron reflectivity, thin film balance, surface and bulk rheology. A strong synergistic lowering of the surface tension is found with cationic surfactants in the concentration range where no appreciable complexation of surfactant and polymer occurs in the bulk solution (as seen from viscosity measurements). Despite appreciable differences between surface tension behaviour, the adsorbed layer is very similar for all the polymers: their thickness is small and the polymer chains are stretched along the surface. The surface tension behaviour of these polymers with non-ionic surfactants is also different. When the polymers are confined in thin films, the forces between surfaces are similar, and independent of surfactant nature: oscillatory forces are measured, which reflect the existence of a polymer network with a well defined mesh size. The connection of foam stability with surface and bulk complexation is far from clear.  相似文献   

15.
We investigated the thinning of wetting films formed from aqueous solution of non-ionic triblock copolymer Pluronic F127 on the surface of silica using a home-made thin film balance and time-resolved ellipsometry. Imaging ellipsometry was used to visualize the film structures at subsequent stages of their development. The results unambiguously show that the time required for the formation of steady films strongly depends on the electrolyte concentration. When increasing the latter from 10(-4) to 0.1 M, this time typically increases with several orders of magnitude, from a few minutes to several hours. Moreover, for sufficiently large amounts of salt, two characteristic relaxation regimes can be clearly identified. After initial quick thinning, further thinning slows down enormously. These typical kinetic regimes are thought to result from the coupled dependencies of the bulk and interfacial properties of F127 on salt concentration. Possible explanations of the phenomenon are discussed.  相似文献   

16.
The conformation and the dilatational properties of three non-ionic triblock PEO-PPO-PEO (where PEO is polyethyleneoxide and PPO is polypropyleneoxide) copolymers of different hydrophobicity and molecular weight were investigated at the water-hexane interface. The interfacial behavior of the copolymers was studied by combining dilatational rheology using the oscillating drop method and ellipsometry. From the dilatational rheology measurements the limiting elasticity values, E(0), of the Pluronics as function of surface pressure, Π, and adsorption time were obtained, i.e. E(0)(t) and E(0)(Π). Here, it is shown that E(0)(t) depends on the number of PEO units and on the bulk concentration, showing maximum and minimum surface elasticity values which indicate conformational changes in the interfacial layer. Furthermore, in the framework of the polymer scaling law theory, conformational transitions were discussed in E(0) vs. Π plots. In a dilute regime (Π<14 mN m(-1)) at the water-hexane interface, E(0)=2Π fits well all the data, which indicates a two-dimensional "stretched chain" conformation. Increasing Π, two other interfacial transitions could take place. The different behavior of Pluronic copolymers could be also described by the local minima of E(0), which depends on the hydrophobicity of the copolymers. Conformational transitions observed by interfacial rheology were compared to ellipsometric data. Experimental results were discussed and explained on the basis of two- and three-dimensional copolymer structure taking into account that PPO chains could be partially immersed in hexane and water.  相似文献   

17.
Drainage in microscopic circular foam films depends significantly on the radial (tangential) mobility of the film surfaces and is accelerated as compared to the limiting case of tangentially immobile surfaces, where velocity of thinning is described by the classical Reynolds’ equation (outflow of viscous fluid from a cylindrical gap between two solid plates). The structure and composition of the adsorption layer and the interfacial mass transfer determine the tangential mobility of the film surfaces and, hence, the measured velocity of film thinning. Experiments with soluble surfactants below the critical micelle concentrations (CMC) have exhibited the effect of dynamic interfacial elasticity. At relatively low bulk concentrations, the interfacial mass transfer is governed by surface diffusion; close to CMC (saturated adsorption layer), the limiting case of tangentially immobile surfaces can be reached and at concentrations above the CMC the film thinning is accelerated again. Here, we report freshly established data on the kinetic behavior of foam films from micellar solutions of soluble nonionic surfactants (decyl-octaoxyethylene alcohol and dodecyl-octaoxyethylene alcohol) in a wide range of concentrations above the CMC aiming to investigate the effect of partially disintegrated micelles acting as sources of surfactant molecules at the surface.  相似文献   

18.
The ability of proteins to provide stability in foams is greatly influenced by their interfacial dilatational rheological properties. Surface tension response of a pulsatingbubble with an adsorbed layer of beta-lactoglobulin was measured for different frequencies and protein concentrations using a pulsating bubble tensiometer. A methodology, accounting for adsorption/desorption as well as variation of surface concentration due to expansion/contraction, was developed for the evaluation of surface dilatational elasticity and viscosity at different frequencies from these measurements. The adsorption rate constants were inferred from the surface pressure dynamics of protein adsorption using a Langmuir minitrough. The desorption rates were shown to be negligible for beta-lactoglobulin from the surface pressure response of a spread monolayer when subjected to compression in a Langmuir minitrough. The proposed model was employed to infer the interfacial dilatational viscosity and elasticity of an adsorbed beta-lactoglobulin layer at the air-water interface from experimental pulsating bubble data for protein concentrations in the range of 0.01-0.5 wt % at pH 7. As expected, the interfacial dilatational rheological properties were found to be higher at higher protein concentrations, this effect being less pronounced for dilatational elasticity. Heating at 80 degrees C for 30 min was found to result in higher interfacial dilatational viscosity and lower interfacial dilatational elasticity though this difference was within experimental error. The traditional approach for the inference of interfacial dilatational rheological properties is found to overpredict the interfacial dilatational elasticity whereas the viscosity values do not differ significantly from those obtained using the current analysis.  相似文献   

19.
A new class of surfactant mixtures is described, which is particularly suitable for studies related to foam dynamics, such as studies of foam rheology, liquid drainage from foams and foam films, and bubble coarsening and rearrangement. These mixtures contain an anionic surfactant, a zwitterionic surfactant, and fatty acids (e.g., myristic or lauric) of low concentration. Solutions of these surfactant mixtures exhibit Newtonian behavior, and their viscosity could be varied by using glycerol. Most importantly, the dynamic surface properties of these solutions, such as their surface dilatational modulus, strongly depend on the presence and on the chain-length of fatty acid(s). Illustrative results are shown to demonstrate the dependence of solution properties on the composition of the surfactant mixture, and the resulting effects on foam rheological properties, foam film drainage, and bubble Ostwald ripening. The observed high surface modulus in the presence of fatty acids is explained with the formation of a surface condensed phase of fatty acid molecules in the surfactant adsorption layer.  相似文献   

20.
Thin silica films with orthogonally aligned hexagonal close-packed cylindrical structure are synthesized by dip coating silica precursors and poly(ethylene oxide)-polyproplyene oxide (PEO-PPO) triblock surfactants (P123) onto modified glass slides. All films cast from this sol display 2D hexagonal pore structures (a approximately 6.2 nm) under transmission electron microscopy (TEM). However, X-ray diffraction (XRD) shows that confining freshly deposited films between two chemically neutral modified slides completely aligns the pores toward the direction orthogonal to the substrate. Equally effective alignment is obtained by using slides modified with either a random PEO-PPO copolymer or P123 itself. The channels in films cast onto unmodified slides, onto modified slides which are exposed to air, or onto modified slides which are exposed to unmodified glass slides align at least partially parallel to the substrate. Parallel mesophase alignment is also observed in a control experiment with a sol containing the nonionic surfactant template decaethelyne glycol hexadecyl ether (Brij-56) sandwiched between copolymer-modified slides because the surfaces are not chemically neutral toward Brij-56. This study confirms that it is possible to use substrate surface chemistry to control the orientation of mesophases in mixtures of reactive silicates and low molecular weight nonionic surfactant templates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号