首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Shuping Zhang 《Optik》2010,121(4):312-316
The photoluminescence (PL) properties of the guest-host films, using CdTeS/ZnS core shell quantum dots (QDs) as the guest and organic small-molecule material Alq3 as the host, are studied by steady-state and time-resolved PL spectroscopy. Both the relative intensity and the PL lifetime are intensively dependent on the weight ratio of Alq3 and CdTeS/ZnS QDs. The detailed analysis provides clear evidence for a Förster energy transfer from Alq3 host to QDs guest, based on the nonradiative resonant transfer mechanism. The results are relevant to the application of hybrid organic/inorganic systems to OLEDs.  相似文献   

2.
The excitation energy transfer from poly(N-vinylcarbazole) (PVK) to tris(8-hydroxyquinoline) aluminum (Alq3) in composite films was investigated by adding an inert polymer, poly(methyl methacrylate) (PMMA). The energy transfer efficiency calculated from the photoluminescence (PL) excitation spectra is consistent with that from the time-resolved PL decay data of the composite films. We have found a linear relationship between the two kinds of the distances, which are calculated according to volume density and the Förster theory. Experimental results and analyses provide a facile method to infer the energy transfer efficiency and the distance between the donor and the acceptor molecules in the composite films.  相似文献   

3.
The organic quantum well devices which are similar to the type-II quantum well of inorganic semiconductor have been fabricated. In the electroluminescence, the blue shift of spectrum with increasing applied voltage is observed, which is interpreted by exciton confinement effect and polarization effect, and the generation of exciton, including carrier injection and energy transfer, is discussed. This energy transfer from barrier to well is studied by photoluminescence and is interpreted in terms of Förster energy transfer. The electromodulation of photoluminescence demonstrates the quenching mainly comes from the dissociation of exciton in NPB and that in Alq3 is very stable.  相似文献   

4.
The photo- and electroluminescence properties of the blend films of Alq3 and MEH-PPV with various weight ratios are studied. The Förster energy transfer with a relatively large Förster radius (46.9 Å) and governs the device luminescent performance, although there are some effect of phase separation. It is found that the energy transfer process governs not only the PL properties in the blend films but also the EL performance of the blend-layer OLEDs.  相似文献   

5.
Organic light-emitting diodes were fabricated with a structure of indium-tin-oxide (ITO)/poly(N-vinylcarzole)(PVK):4-(dicyanom-ethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)/8-tris-hydroxyquinoline aluminum (Alq3)/lithium fluoride (LiF)/Al. The energy transfer from PVK to Alq3 then to DCJTB and the charge trapping processes were investigated by employing the photoluminescence (PL) and electroluminescence (EL) spectra. With increasing thickness of the Alq3 layer, the PL and EL emission from PVK were decreased gradually, which indicated that the effective energy transfer occurred from PVK to Alq3 and then from Alq3 to DCJTB. At the same time, we found that the exciton recombination zone could be adjusted by controlling the Alq3 layer thickness and the applied voltages. The effects of different DCJTB concentrations on the optical and electrical characteristics of the devices were investigated, and an obvious red-shift was observed with the DCJTB dopant concentrations increasing in the PL and EL spectra.  相似文献   

6.
Tris-(8-hydroxyquinoline)aluminum (Alq3), one of the most widely used light emitting and electron transport materials in organic luminescent devices, has been synthesized. Alq3 thin films have been deposited by a thermal evaporation process on glass substrates. The effect of swift heavy ion (SHI) irradiation using 40 MeV Li3+ on the Alq3 thin films has been studied by UV-visible, infrared, photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectroscopy. From TRPL studies, it is found that the PL of Alq3 thin films arises from two species corresponding to its two geometrical isomers, namely facial and meridional having two different life times. It is also confirmed that the PL and lifetimes of excitons decrease with the increase of ion fluences of SHI of 40 MeV Li3+, indicating a transfer of exciton energy to unstable cationic Alq3 species generated by SHI irradiation.  相似文献   

7.
宋淑芳  赵德威  徐征  徐叙瑢 《物理学报》2007,56(6):3499-3503
采用多源有机分子气相沉积系统制备了不同类型的有机多量子阱结构,利用电化学循环伏安法和吸收光谱、荧光光谱研究了量子阱的类型、光致发光的特性.电化学循环伏安法和吸收光谱的测量结果表明,PBD/8-羟基喹啉铝(Alq3)有机量子阱为Ⅰ型量子阱结构,NPB/Alq3和BCP/Alq3有机量子阱为Ⅱ型量子阱结构.荧光光谱的研究结果表明,PBD/Alq3和BCP/Alq3量子阱结构可以实现PBD,BCP向Alq3能量完全转移,而NPB/Alq3量子阱结构,NPB和Alq3之间只是部分能量转移.文中对影响能量转移的因素进行了讨论. 关键词: 有机量子阱 能量转移  相似文献   

8.
We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)3phen (x):CBP/BCP/ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Förster energy transfer participates in EL process. At the current density of 10.0 and 80.0 mA/cm2, 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Förster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Förster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Förster energy transfer compared with carrier trapping.  相似文献   

9.
聂海  张波  唐先忠 《中国物理》2007,16(3):730-734
This paper reports that the polymer/organic heterojunction doped light-emitting diodes using a novel poly-TPD as hole transport material and doping both hole transport layer and emitter layer with the highly fluorescent rubrene and DCJTB has been successfully fabricated. The basic structure of the heterostructure is PTPD/Alq3. When hole transport layer and electron transport layer are doped simultaneously with different dopant, the electroluminescence quantum efficiencies are about 3 times greater than that of the undoped device. Compared with undoped device and conventional TPD/Alq3 diode, the stability of the doping device is significantly improved. The process of emission for doped device may include carrier trapping as well as F\"{o}rster energy transfer.  相似文献   

10.
Properties of photoluminescence and Förster energy transfer dynamics based on an organic pyridium salt trans-4-[p-(N-Hydroxyethyl-N-methylamino)Styryl]-N-methylpyridinium iodide (ASPI) and organic small molecule Alq3 in PMMA polymeric thin films are investigated by steady-state and time-resolved fluorescent spectra as well as theoretical calculation. The observation of reduced emission intensity and the fluorescent lifetime of Alq3 is demonstrated, while the ASPI emission gradually increases and is finally dominant in the PL spectra with increasing ASPI doping concentration. Such results show that there exists an efficient Förster energy transfer (FET) from Alq3 to ASPI due to the large spectral overlap between ASPI absorption and Alq3 emission. The difference between the theoretical FET efficiency and the experimental data is caused by the lower mobility of the Alq3 exciton in the MMA matrix.  相似文献   

11.
锁钒  于军胜  邓静  蒋亚东  王睿  汪伟志  刘天西 《物理学报》2007,56(11):6685-6690
研究了新型的芴-咔唑共聚物(PFC)与聚乙烯咔唑(PVK)掺杂体系的光致发光和电致发光特性.制备了结构分别为indium-tin-oxide(ITO)/PVK:PFC/bathocuproine(BCP)/tris-(8-hydroxylquinoline)-aluminum (Alq3) /Mg:Ag,ITO/PFC/BCP/Alq3/Mg∶Ag和ITO/PVK/BCP/Alq3/Mg∶Ag的三种有机电致发光器件.对器件的光电特性进行了测试.结果表明,掺杂体系中的PVK有效地抑制了固态膜中PFC激基缔合物的形成.掺杂器件在不同的外加电场作用下发生发光层位置的移动,通过调节外加电场,可以获得从绿光到蓝光的可见光发射.当外加电压大于7V时,掺杂器件的蓝色发光亮度达到1650cd/m2,推测其中可能存在从PVK到PFC的能量传递过程.  相似文献   

12.
In this work,the influence of a small-molecule material,tris(8-hydroxyquinoline) aluminum (Alq 3),on bulk het-erojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C 61-butyric acid methyl ester (PCBM).By dop-ing Alq 3 into MEH-PPV:PCBM solution,the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq 3 to MEH-PPV,which probably induces the increase of photocurrent generated by excitons dissociation.However,the low carrier mobility of Alq 3 is detrimental to the efficient charge transport,thereby blocking the charge collection by the respective electrodes.The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs.For the case of 5 wt.% Alq 3 doping,the device performance is deteriorated rather than improved as compared with that of the undoped device.On the other hand,we adopt Alq 3 as a buffer layer instead of commonly used LiF.All the photovoltaic parameters are improved,yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer.Even for the 5 wt.% Alq 3 doped device,the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq 3.The performance deterioration of Alq 3-doped devices can be explained by the low solubility of Alq 3,which probably deteriorates the bicontinuous D-A network morphology;while the performance improvement of the devices with Alq 3 as a buffer layer is attributed to the increased light harvesting,as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq 3 compared with that of MEH-PPV.  相似文献   

13.
解晓东  郝玉英  章日光  王宝俊 《物理学报》2012,61(12):127201-127201
采用密度泛函理论研究了Li原子掺杂8-羟基喹啉铝(Alq3)分子的几何构型、 前线分子轨道及电子转移特性. 研究结果表明, Li原子掺杂Alq3后, Li原子与Alq3的O, N原子键合, 形成电子转移复合物. Li原子将部分电子转移到Alq3的吡啶环上, 在Alq3的带隙内形成施主能级, 这种n型掺杂结构有效地提高了电子的传输效率; 但过多的Li原子的掺杂会使Alq3分解, 从而减弱其电子传输能力. 为使Alq3的电子传输能力达到最高, Li原子的掺杂应保持在2:1左右的比例.  相似文献   

14.
The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage considering the resonant Forster energy transfer between the at 110K is observed, which can be explained by wetting layer states at elevated temperatures.  相似文献   

15.
Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were significantly improved by assistant Förster energy transfer. The coguest-host system was composed of an electron transport organic molecule tris(8-hydroxyquinoline) aluminum (Alq3) as host and a green fluorescent dye (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one) (C545T) as assistant dopant codoped with the guest red dye DCJTB as emitter in a matrix of polystyrene (PS). It was found that the threshold and loss were greatly reduced to 0.007 mJ?pulse-1 and 7 cm-1, and the gain was significantly enhanced to 52 cm-1 by doping of C545T. The improvement of ASE performance in Alq3:C545T:DCJTB film was attributed to the energy assistant effect of C545T, leading more exciton energy to transfer to DCJTB.  相似文献   

16.
Photoluminescence (PL) based on Förster energy transfer between p-sexiphenyl (p-6P) and 5,5′-bis(4-phenylyl)-2,2′-bithiophene (BP2T) was investigated for their coevaporated and laminated thin films. In the former films, fluorescence quenching of the p-6P was accompanied by appearance of BP2T fluorescence, which indicated existence of the energy transfer between the donors and the acceptors. The latter films were fabricated by successive depositions of p-6P, MgF2 and BP2T in which the thickness of the MgF2 spacer was varied. The energy-transferred acceptor fluorescence was suppressed by the spacer thicker than the Förster distance (∼10 nm).  相似文献   

17.
宋淑芳  赵德威  徐征  徐叙瑢 《物理学报》2007,56(5):2910-2914
采用多源有机分子气相沉积系统(OMBD)制备了Alq3,PBD/Alq3,PBD/Alq3/PBD单层、双层以及量子阱结构,利用电化学循环伏安法和吸收光谱、荧光光谱研究了量子阱的类型和样品的光致发光特性.电化学循环伏安法和吸收光谱的测量结果表明,PBD/Alq3有机量子阱为Ⅰ型量子阱结构.荧光光谱的研究结果表明,单层Alq3的光致发光峰不随Alq3厚度变化而变化;但是双层PBD/Alq3结构光致发光峰随Alq3厚度的减小而发生蓝移;同样对于PBD/Alq3/PBD量子阱结构光致发光峰随Alq3厚度的减小而发生蓝移.对引起光谱蓝移的原因进行了讨论. 关键词: 有机量子阱 光谱蓝移  相似文献   

18.
研究两种掺杂电致发光器件聚乙烯基咔唑(PVK):Rubrene和Alq3:MN-PPV。通过其光致发光及电致发光特性的研究,发现两种器件的光致发光与电致发光有较大差别。分析认为这是能量传递及电致发光中陷阱对载流子吸引的共同作用使得PVK激子在光致发光和电致发光中的复合速率不同造成的;同时发现对于不同浓度的PVK:Rubrene及Alq3:MN-PPV电致发光随电压增加都发生变色现象,但是它们分别是由两种不同的机制造成的:前者作为染料分子Rubrene,不能形成类似Alq3那样的分相体系,Rubrene发光主要来自PVK的能量传递及陷阱电子对PVK空穴的吸引;后者是由于分相造成载流子在两相中的迁移不平衡。  相似文献   

19.
Fluctuation kinetics of the hopping fluorescence quenching in disordered solid solutions is investigated for the first time. Measurements were made in the chelated complexes of rare-earth ions [Y1−xTbx(pyca)3(H2O)2]nH2O used as chromophore. The Tb3+ ions and the OH--ions of unbounded water molecules appear as fluorescent donors and randomly distributed acceptors, respectively, with the dipole-dipole interaction between them. The measured fluctuation kinetics is the kinetics of the Förster type but with larger decay amplitude. It begins almost immediately after the initial static stage of quenching, and lasts for the entire interval of measurements leaving no room at all for the well-known exponential kinetics with constant rate. Proposed theoretical explanation of the phenomenon is based on the solution of the closed many-particle integral equation for the observable kinetics of hopping fluorescence quenching. The methods for determination of the energy transfer microparameters by the measured fluorescence quenching kinetics are discussed.  相似文献   

20.
In this paper, the roles of zinc selenide (ZnSe) sandwiched between organic layers, i.e. organic/ZnSe/aluminum quinoline (Alq3), have been studied by varying device structure. A broad band emission was observed from ITO/poly(N-vinylcarbazole)(PVK)(80 nm)/ZnSe(120 nm)/ Alq3(15 nm)/Al under electric fields and it combined the emissions from the bulk of PVK, ZnSe and Alq3, however, emission from only Alq3 was observed from trilayer device ITO/N,N-bis-(1-naphthyl)-N,N-diphenyl-1, 1-biphenyl-4, 4-diamine (NPB) (40 nm)/ZnSe(120 nm)/ Alq3(15 nm)/Al. Consequently the luminescence mechanism in the ZnSe layer is suggested to be charge carrier injection and recombination. By thermal co-evaporating Alq3 and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), we get white light emission with a Commission Internationale de l’E clairage (C.I.E) co-ordinates of (0.32, 0.38) from device ITO/PVK(80 nm)/ZnSe(120 nm)/ Alq3:DCJTB(0.5 wt% DCJTB)(15 nm)/Al at 15 V and the device performs stably with increasing applied voltages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号