首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study on interface states density distribution and characteristic parameters of the In/SiO2/p-Si (MIS) capacitor has been made. The thickness of the SiO2 film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 Å. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 Ω and 0.592 eV, respectively. The energy distribution of the interface state density Dit was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44×1013 eV−1 cm−2 in 0.329-Ev eV to 1.11×1013 eV−1 cm−2 in 0.527-Ev eV at room temperature. Furthermore, the values of interface state density Dit obtained by the Hill-Coleman method from the C-V characteristics range from 52.9×1013 to 1.11×1013 eV−1 cm−2 at a frequency range of 30kHz-1 MHz. These values of Dit and Rs were responsible for the non-ideal behaviour of I-V and C-V characteristics.  相似文献   

2.
This paper attempts to realize unpinned high-k insulator-semiconductor interfaces on air-exposed GaAs and In0.53Ga0.47As by using the Si interface control layer (Si ICL). Al2O3 was deposited by ex situ atomic layer deposition (ALD) as the high-k insulator. By applying an optimal chemical treatment using HF acid combined with subsequent thermal cleaning below 500 °C in UHV, interface bonding configurations similar to those by in situ UHV process were achieved both for GaAs and InGaAs after MBE growth of the Si ICL with no trace of residual native oxide components. As compared with the MIS structures without Si ICL, insertion of Si ICL improved the electrical interface quality, a great deal both for GaAs and InGaAs, reducing frequency dispersion of capacitance, hysteresis effects and interface state density (Dit). A minimum value of Dit of 2 × 1011 eV−1 cm−2 was achieved both for GaAs and InGaAs. However, the range of bias-induced surface potential excursion within the band gap was different, making formation of electron layer by surface inversion possible in InGaAs, but not possible in GaAs. The difference was explained by the disorder induced gap state (DIGS) model.  相似文献   

3.
Metal-oxide-semiconductor (MOS) capacitors incorporating hafnium dioxide (HfO2) dielectrics were fabricated and investigated. In this work, the electrical and interfacial properties were characterized based on capacitance-voltage (C-V) and current-voltage (I-V) measurements. Thereafter the current conduction mechanism, electron effective mass (m*), mean density of interface traps per unit area and energy (), energy distribution of interface traps density and near-interface oxide traps density (NNIOT) were studied in details. The characterization reveals that the dominant conduction mechanism in the region of high temperature and high field is Schottky emission. The mean density of interface traps per unit area and energy is about 6.3 × 1012 cm−2 eV−1 by using high-low frequency capacitance method. The maximum Dit is about 7.76 × 1012 cm−2 eV−1 located at 0.27 eV above the valence band.  相似文献   

4.
In a discharged supersonic jet of Cl2, transitions of the D′ 2g(3P2)-A3Π(2u) system for 35Cl2 were observed directly by laser induced fluorescence spectroscopy. By a discharge in Cl2, the Cl2 molecules were populated into the A′ state, which is a metastable and optically forbidden state, from the state. An ultraviolet laser radiation excites the molecules to the D′ ion-pair state. A set of Dunham parameters for the A′ state is determined from a global least-squares fitting for 59 vibronic bands with v″ = 0-7. In the fitting, the previously reported data, T(v) and B(v) for the v = 14 and 15 bands of the A′ state [T. Ishiwata, A. Ishiguro, K. Obi, J. Mol. Spectrosc. 147 (1991) 300-320], were included. Y00 = 57295.723(5) cm−1 of the D′ state [J.-H. Si, T. Ishiwata, K. Obi, J. Mol. Spectrosc. 147 (1991) 334-345] was also included in the global fitting in order to determine the absolute position of the A′ state. The determined parameters of the A′ state are Y00 = 17171.506(14), Y10 = 255.915(85), Y20 = −4.465(70), Y30 = −8.7(23) × 10−2, Y40 = 6.3(35) × 10−3, Y50 = −4.9(26) × 10−4, Y60 = 1.43(69) × 10−5, Y01 = 0.16282(15), Y11 = −2.363(68) × 10−3, Y21 = −5.01(93) × 10−5, and Y31 = −3.01(36) × 10−6 (in cm−1 and one standard deviations of the fit in parentheses). The absolute position of the A′ state is determined with good accuracy.  相似文献   

5.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

6.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

7.
Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal-insulator-semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV−1/cm2 and the surface charge density in the insulator film was of order 1010 cm−2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.  相似文献   

8.
We report the resonant two-photon ionization and mass-analyzed threshold ionization (MATI) spectra of m-methoxyaniline and o-methoxyaniline. The vibronic features of m-methoxyaniline are built on 34308 ± 2 and 34495 ± 2 cm−1 corresponding to the origins of the S1 ← S0 electronic transition (E1’s) of the cis and trans rotamers. Analysis of the MATI spectra gives the adiabatic ionization energies (IEs) of 59983 ± 5 and 60879 ± 5 cm−1 for these two species. o-Methoxyaniline is found to have only one stable structure whose E1 and IE are 33875 ± 2 and 58678 ± 5 cm−1, respectively. Most of the active vibrations of m- and o-methoxyaniline in the electronically excited S1 and cationic ground D0 states result from the in-plane ring vibrations. Comparing these data with those of p-methoxyaniline allows us to learn about the vicinal substitution effects resulting from the relative locations of the NH2 and OCH3 substituents.  相似文献   

9.
The equilibrium p(O2)-T-δ diagrams of perovskite-type La1 − xSrxCoO3 − δ (x = 0.3-0.7), collected at 873-1223 K in the oxygen partial pressure range 10− 5-1 atm by coulometric titration and thermogravimetric analysis, were analyzed in order to appraise the effects of the point-defect interactions. The nonstoichiometry variations were adequately described combining the rigid-band approach for delocalized holes and the pair-cluster formation reaction involving oxygen vacancies and Co2+ cations, whilst coulombic repulsion between the positively charged vacancies can be neglected. The resultant relationships between the oxygen chemical potential and mobile vacancy concentration were used for numerical regression analysis of the steady-state oxygen permeation through dense La1 − xSrxCoO3 − δ membranes, affected by the surface exchange kinetics when Sr2+ content is higher than 40-50%. The calculated ionic conductivity is strongly influenced by the defect association processes, and decreases with decreasing concentration of the mobile vacancies as clustering starts to prevail on reduction. The Mössbauer spectroscopy studies of La1 − xSrxCoO3 − δ, doped with 1 mol% 57Fe isotope and moderately reduced at p(O2) ≈ 105 atm, show no long-range vacancy ordering at x ≤ 0.5.  相似文献   

10.
The pressure dependence of the peak positions and widths of the fluorescence lines corresponding to the 5DJ7FJ electronic transitions in Sm2+-doped SrFCl crystals was measured at room temperature (RT) with a diamond anvil cell (DAC) and a high-pressure gas system, using silicone oil and gaseous helium as the pressure-transmitting medium, respectively. At RT and ambient pressure the electronic transitions 5D07FJ (J= 0, 1, 2, 3) and 5D17FJ (J=0, 1, 2) in Sm2+ ions yielded rather sharp spectral lines peaked at 14490, 14206, 13685, 13012 cm−1 and 15823, 15533, 15012 cm−1, respectively. At pressures up to 45 kbar in the DAC all these peaks shifted linearly to lower energies at the rates −2.36, −2.10, −2.43, −2.22 cm−1/kbar and −2.35, −2.33, −2.47 cm−1/kbar. Under purely hydrostatic gas pressure up to 7 kbar at RT the initial (normal pressure) widths of the 5D07F0, 5D07F1 and 5D17F0 lines having a Lorentzian profile (with corrected FWHM values of 1.55, 5.71 and 1.97 cm−1) decreased linearly with increasing pressure at the rates −0.009(2), −0.077(3) and −0.034(2) cm−1/kbar, respectively. Possible mechanisms of the observed pressure effects are discussed. For further studies of linewidth variations with the pressure, gaseous helium as a best possible high-pressure medium is strongly recommended.  相似文献   

11.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

12.
The adsorption of ethylene on Cu12Pt2 clusters has been studied within the density functional theory (DFT) approach to understand the high ethylene selectivity of Cu-rich Pt-Cu catalyst particles in the reaction of hydrogen-assisted 1,2-dichloroethane dechlorination. The structural parameters for Cu12Pt2 clusters with D4h, D2d, and C3v symmetry have been calculated. The relative stability of the isomeric Cu12Pt2 clusters follows the order: C3v > D2d > D4h. Each isomer has an active site for ethylene adsorption that consists of a single Pt atom surrounded by Cu atoms. The interaction of ethylene with the active site yields a π-C2H4 adsorption complex. The strongest π-C2H4 complex forms with the cluster of C3v symmetry; the bonding energy, ΔEπ(C2H4), is −15.6 kcal mol−1. The bonding energies for the π-C2H4 complex with Cu14 and Pt14 clusters are −6.5 and −18.8 kcal mol−1, respectively.The addition of Pt to Cu modifies the valence spd-band of the cluster as compared to a Cu14 cluster. The DOS near the Fermi level increases when C2H4 adsorbs on the Cu12Pt2 cluster. As well, the center of the d-band shifts toward lower binding energies. Ethylene adsorption also induces a number of states below the d-band. These states correspond to those of gas-phase C2H4.The vibrational frequencies of C2H4 adsorbed on the clusters of D4h and C3v symmetry have been calculated. The phonon vibrations occur below 250 cm−1. The intense bands around 200 cm−1 are attributed to stretching vibrations of the Pt-Cu bonds normal to the cluster surface. The stretching vibrations of the Pt-C bonds depend on the local structure of the active site: νs(Pt-C) = 268 cm−1 and νas(Pt-C) = 357 cm−1 for the cluster of the D4h symmetry; νs(Pt-C) = 335 cm−1 and νas(Pt-C) = 397 cm−1 for the cluster of the C3v symmetry. Bands in the range of 800-3100 cm−1 are attributed to vibrations of the adsorbed C2H4 molecule. The signature frequencies of the π-C2H4 adsorption complex are the δs(CH2) deformation vibration at ∼1200 cm−1 and the ν(C-C) stretching vibration at ∼1500 cm−1. These vibration are absent for di-σ-C2H4 adsorption complexes.  相似文献   

13.
We re-examined the submillimeter-wave transition frequencies of H2D+ (J = 110 − 111 at 372.4 GHz) and D2H+ (J = 110 − 101 at 691.7 GHz) to resolve suggested slight difference in velocity (vLSR) of these species detected in the cold pre-stellar core 16293E recently. Both H2D+ and D2H+ were generated in a magnetically confined extended-negative glow discharge of a gaseous mixture of H2/D2/Ar. A combination of small improvements in various aspects of the measurements such as double modulation technique combined with a conventional frequency modulation and magnetic field modulation and more efficient signal accumulation method allowed us to improve signal-to-noise ratio, and thus to determine the transition frequencies more accurately. Both transition frequencies for the H2D+ and D2H+ lines have been thus determined to be 372421.385(10) and 691660.483(20) MHz, respectively. These precise rest frequencies suggest that the vLSR of H2D+ and D2H+ in the pre-stellar core 16293E are indeed different as indicated in a recent astronomical observation. In addition, in this investigation, another transition of H2D+ which falls in this frequency region, J = 321 − 322 transition, has been observed at 646430.293(50) MHz. As H2D+ is a lightest asymmetric-top molecule and it is difficult to predict the rotational transition frequencies by using the effective asymmetric rotor Hamiltonian, any new observation of the rotational lines will be useful to improve the molecular parameters. The molecular constants for the ground state have been obtained for H2D+ and D2H+ by fitting these new measured frequencies together with the combination differences.  相似文献   

14.
We applied the resonant two-photon ionization and mass-analyzed threshold ionization spectroscopic techniques to record the vibronic and cation spectra of m-chloroaniline. The band origin of the first electronic transition was found to be 33 658 ± 2 cm−1, whereas the adiabatic ionization energy was determined to be 63 958 ± 5 cm−1. Within our experimental detection limit, these measured values are the same for both of the 35Cl and 37Cl isotopomers. The observed active modes of this molecule in the electronically excited S1 and cationic ground D0 states mainly involve the in-plane ring deformation and substituent-sensitive bending vibrations.  相似文献   

15.
Interface properties of BCN/GaN metal-insulator-semiconductor (MIS) structures are investigated by X-ray photoelectron spectroscopy (XPS) and capacitance versus voltage (C-V) characteristics measurements. The BCN/GaN samples are fabricated by in situ process consisting of plasma treatment and deposition of BCN film in the plasma-assisted chemical vapor deposition (PACVD) apparatus. XPS measurement shows that the oxide formation at the BCN/GaN interface is suppressed by nitrogen (N2) and hydrogen (H2) plasma treatment. The interface state density is estimated from C-V characteristics measured at 1 MHz using Terman method. The minimum interface state density appears from 0.2 to 0.7 eV below the conduction band edge of GaN. The minimum value of the interface state density is estimated to be 3.0 × 1010 eV−1 cm−2 for the BCN/GaN structure with mixed N2 and H2 plasma treatment for 25 min. Even after annealing at 430 °C for 10 min, the interface state density as low as 6.0 × 1010 eV−1 cm−2 is maintained.  相似文献   

16.
The Ag diffusion in superconducting YBa2Cu3O7 (YBaCuO) ceramic has been studied over the duration of the diffusion range 5-24 h in the temperature range 700-850 °C by the energy-dispersive X-ray fluorescence (EDXRF) technique. For the excitation of silver atoms, an annular Am-241 radioisotope source (50 mCi) emitting 59.543 keV photons was used. The temperature dependences of silver diffusion coefficients in grains (D1) and over the grain boundaries in the range 700-850 °C (D2) are described by the relations D1=1.4×10−2 exp[−(1.18±0.10)/kT] and D2=3.1×10−4 exp[−(0.87±0.10)/kT].  相似文献   

17.
The absorption spectrum of D2O vapor from 0.2 to 2.0 THz (6.7-67 cm−1) which is associated with rotational modes was measured at one atmosphere using terahertz time-domain spectroscopy (THz-TDS). The linewidth and collisional dephasing times were measured for 26 pure rotational transitions in the ground vibrational state (0 0 0). The temperature dependence of the linewidth (Δν) behaves as Δν ∼ T−3/4 and the linewidth decrease with increasing temperature is attributed to the 1/r6 force of interaction between colliding D2O molecules.  相似文献   

18.
A line list for D2 16O isotopologue of water molecule was calculated in the region 0-16,000 cm−1 with energy levels up to J=30. Variational calculations are based on the semi-theoretical potential energy surface obtained by morphing ab initio potential using the experimental energy levels of D2 16O. For energy levels with J=0, 2, 5 and 10, the standard deviation of the fit is 0.023 cm−1. This line list should make an excellent starting point for spectroscopic modeling and analysis of D2O rovibrational spectra.  相似文献   

19.
The enhancement spectrum of the collision induced absorption of D2 in its fundamental band region 2600-4000 cm−1 in binary mixtures D2-Kr was studied at 298 K for base densities of D2 in the range 9-20 amagat and for partial densities of Kr in the range 7-120 amagat. The binary absorption coefficient of the band has been determined from the measured integrated absorption coefficient and found to be 3.9 × 10−3 cm−2 amagat−2. An analysis of the experimental spectrum was carried out by assuming appropriate line-shape functions and the half-width parameters δ1, δ2, δd and δc of the long range quadrupole, and of the short range overlap induced transitions have been determined. Good agreement was obtained between the recorded spectrum of the fundamental band and the synthetic profile.  相似文献   

20.
The infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) has been recorded with an unapodized resolution of 0.004 cm−1 in the wavenumber range of 1340-1460 cm−1 using the Fourier transform technique. By assigning and fitting a total of 870 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation, three rotational and five quartic centrifugal distortion constants for the upper state (v12 = 1) were determined for the first time. The rms deviation of the fit was 0.00044 cm−1 which is close to the experimental precision of the absorption lines. The A-type ν12 band centred at 1400.762811 ± 0.000041 cm−1was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.20928 ±  0.00002 μÅ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号