首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of a labile tungsten nitrile complex, [(Cp*)W(CO)2(NCMe)Me] (Cp*=η5‐C5Me5), with H3SiC(SiMe3)3 gave the hydrido(hydrosilylene) complex [(Cp*)(CO)2(H)W?Si(H){C(SiMe3)3}] ( 1a ). The hydrido(silylene) complex [(η5‐C5Me4Et)(CO)2(H)W?SiMes2] ( 2 ) (Mes=2,4,6‐Me‐C6H2) was synthesized by a similar reaction with H2SiMes2. There is a strong interligand interaction between the hydrido and silylene ligands of these complexes; this was confirmed by a neutron diffraction study of [D2] 1b , that is, the deuterido and η5‐C5Me4Et derivative of 1a . The exchange between the W? H and the Si? D groups was observed in the deuterido complex [D] 1a . This H/D exchange proceeded slowly at room temperature, but very rapidly under UV irradiation. Variable‐temperature NMR spectroscopy measurements show the dynamic behavior of carbonyl ligands in 1a . Complex 1a reacted with acetone at room temperature to give mainly a hydrosilylation product, [(Cp*)(CO)2(H)W?Si(OiPr){C(SiMe3)3}] ( 3a ), along with a siloxy complex, [(Cp*)(CO)2WO(Si(H)iPr{C(SiMe3)3})] ( 4a ). At low temperature, a different reaction, namely, α‐H abstraction, proceeded to give an equilibrium mixture of 1a and a dihydrido(silyl) complex, [(Cp*)(CO)2(H)2W(Si(H){OC(?CH2)Me}{C(SiMe3)3})] ( 5 ).  相似文献   

2.
Activation of ansa‐zirconocenes of the type Rac [Zr{1‐Me2Si(3‐R‐(η5‐C9H5))(3‐R′‐(η5‐C9H5))}Cl2] [R = Et, R′ = H ( 1 ); R = Pr, R′ = H ( 2 ); and R = Et, R′ = Pr ( 3 ), R, R′ = Me ( 4 ) and R, R′ = Bu ( 5 )] by MAO has been studied by UV–visible spectroscopy. Compounds 1–3 have been tested in the polymerization of ethylene at different Al:Zr ratios. UV–vis spectroscopy was used to determine a correlation between the electronic structures of ( 1–5 ) and their polymerization activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

4.
The platinum complex [Pt(ItBuiPr′)(ItBuiPr)][BArF] interacts with tertiary silanes to form stable (<0 °C) mononuclear PtII σ‐SiH complexes [Pt(ItBuiPr′)(ItBuiPr)(η1‐HSiR3)][BArF]. These compounds have been fully characterized, including X‐ray diffraction methods, as the first examples for platinum. DFT calculations (including electronic topological analysis) support the interpretation of the coordination as an unusual η1‐SiH. However, the energies required for achieving a η2‐SiH mode are rather low, and is consistent with the propensity of these derivatives to undergo Si?H cleavage leading to the more stable silyl species [Pt(SiR3)(ItBuiPr)2][BArF] at room temperature.  相似文献   

5.
Half‐metallocene diene complexes of niobium and tantalum catalyzed three‐types of polymerization: (1) the living polymerization of ethylene by niobium and tantalum complexes, MCl24‐1,3‐diene)(η5‐C5R5) ( 1‐4 ; M = Nb, Ta; R = H, Me) combined with an excess of methylaluminoxane; (2) the stereoselective ring opening metathesis polymerization of norbornene by bis(benzyl) tantalum complexes, Ta(CH2Ph)24‐1,3‐butadiene)(η5‐C5R5) ( 11 : R = Me; 12 : R = H) and Ta(CH2Ph)24o‐xylylene)(η5‐C5Me5) ( 16 ); and (3) the polymerization of methyl methacrylate by butadiene‐diazabutadiene complexes of tantalum, Ta(η2‐RN=CHCH=NR)(η4‐1,3‐butadiene)(η5‐C5Me5) ( 25 : R = p‐methoxyphenyl; 26 : R = cyclohexyl) in the presence of an aluminum compound ( 24 ) as an activator of the monomer.  相似文献   

6.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

7.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

8.
Abstract

P.P-Dialkylthiophosphinsäureamide R2P(S)NHR' (R=Me, 'Pr, 'Bu; R'=Me, Et, iPr. cHex. tBu. Ph. etc.) wurden erhalten durch Umsetzung von R2PNHR' mit Schwefel oder durch Reaktion von Me2P(S)CI mit primaren Aminen. Ihre 31P- und 13C-NMR-Spektren werden diskutiert. Insbesondere die Di-t-butylthiophosphinsäureamide sind auszilg;ergewöhnlich stabil gegen Hydrolyse und Luftsauerstoff. P,P-Dialkylthiophosphinic acid amides R2P(S)NHR' (R=Me. iPr. tBu; R'=Me, Et, iPr, cHex. tBu, Ph. etc.) have been obtained by reaction of the corresponding aminophosphines with sulfur or by reaction of dimethylthiophosphorylhalides with primary amines. Their 31P- and 13C-NMR spectra are discussed. The di-t-butylthiophosphinic compounds proved to be remarkably stable against moisture and oxygen.  相似文献   

9.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

10.
The five‐coordinated ReI hydride complexes [Re(Br)(H)(NO)(PR3)2] (R=Cy 1 a , iPr 1 b ) were reacted with benzylbromide, thereby affording the 17‐electron mononuclear ReII hydride complexes [Re(Br)2(H)(NO)(PR3)2] (R=Cy 3 a , iPr 3 b ), which were characterized by EPR, cyclic voltammetry, and magnetic susceptibility measurements. In the case of dibromomethane or bromoform, the reaction of 1 afforded ReII hydrides 3 in addition to ReI carbene hydrides [Re(?CHR1)(Br)(H)(NO)(PR3)2] (R1=H 4 , Br 5 ; R=Cy a , iPr b ) in which the hydride ligand is positioned cis to the carbene ligand. For comparison, the dihydrogen ReI dibromide complexes [Re(Br)2(NO)(PR3)22‐H2)] (R=Cy 2 a , iPr 2 b ) were reacted with allyl‐ or benzylbromide, thereby affording the monophosphine ReII complex salts [R3PCH2R′][Re(Br)4(NO)(PR3)] (R′=? CH?CH2 6 , Ph 7 ). The reduction of ReII complexes has also been examined. Complex 3 a or 3 b can be reduced by zinc to afford 1 a or 1 b in high yield. Under catalytic conditions, this reaction enables homocoupling of benzylbromide (turnover frequency (TOF): 3 a 150, 3 b 134 h?1) or allylbromide (TOF: 3 a 575, 3 b 562 h?1). The reaction of 6 a and 6 b with zinc in acetonitrile affords in good yields the monophosphine ReI complexes [Re(Br)2(NO)(MeCN)2(PR3)] (R=Cy 8 a , iPr 8 b ), which showed high catalytic activity toward highly selective dehydrogenative silylation of styrenes (maximum TOF of 61 h?1). Single‐electron transfer (SET) mechanisms were proposed for all these transformations. The molecular structures of 3 a , 6 a , 6 b , 7 a , 7 b , and 8 a were established by single‐crystal X‐ray diffraction studies.  相似文献   

11.
The trichlorides of yttrium, samarium, and lutetium react with 2 equivalents of Na[C5H4 tBu] and 1 equivalent of NaBH4 to give [(η5-C5H4 tBu)2LnBH4(THF)] (Ln = Y ( 1 ), Sm ( 2 ), Lu ( 3 )) or with 2 equivalents of Na[C5Me4R] and 1 equivalent of NaBH4 to form [(η5-C5Me4R)2 · LnBH4(THF)] (R = H, Ln = Y ( 4 ), Sm ( 5 ), Lu ( 6 ); R = Me, Ln = Y ( 7 ), Sm ( 8 ), Lu ( 9 ); R = Et, Ln = Y ( 10 ), Sm ( 11 ), Lu ( 12 ); R = iPr, Ln = Y ( 13 ), Sm ( 14 ), Lu ( 15 )). The new compounds have been characterized by elemental analysis, NMR spectroscopy and mass spectrometry. The crystal structures of 8 and 10 were determined by single crystal X-ray diffraction.  相似文献   

12.
The nitrosylcarbonylisonitrile complexes η5-C5H5M(NO)(CO)CNR (R = Me for Cr, Mo, W; R = Et, SiMe3, GeMe3, SnMe3 for Mo) are formed by treatment of the nitrosylcarbonylcyanometalates Na[η5-C5H5M(NO)(CO)CN] with [R3O]BF4 (R = Me, Et), Me3SiCl, Me3GeCl or Me3SnCl. The isoelectronic dicarbonylisonitrile compounds η5-C5H5Mn(CO)2CNR (R = SiMe3, GeMe3, SnMe3, PPh2, AsMe2) and η5-C5H5Re(CO)2CNAsMe2 are obtained by analogous reactions of Na[η5-C5H5M(CO)2CN] (M = Mn, Re) with Me3ECl (E = Si, Ge, Sn), Ph2PCl and Me2AsBr.With phosgene the anionic complexes Na[η5-C5H5M(CO)2CN] (M = Mn, Re) can be transformed into the new carbonyldiisocyanide-bridged dinuclear complexes η5-C5H5M(CO)2CN-C(O)-NC(OC)2M-η5-C5H5. Finally, the reactions of η5-C5H5M(NO)(CO)CNMe (M = Cr, Mo, W) with NOPF6, leading to the cationic dinitrosylisonitrile complexes [η5-C5H5M(NO)2CNMe]+, are described.  相似文献   

13.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

14.
The aluminium and copper enolates derived from (η5-C5H5)Fe(CO)(PPh3)COCH2CH3 are chiral propionate enolate equivalents which on reaction with aldehydes (RCHO, RMe.Et,iPr,tBu) provide stereoselective syntheses of threo- and erytho-α-methyl-β-hydroxy acids respectively.  相似文献   

15.
Treatment of 2-X-substituted pyrazines [X = H, Me, Et, Pr, i-Pr, t-Bu, MeCH(OH), H2N, AcNH] with O-mesitylenesulfonylhydroxylamine gave the corresponding 2-X- and 3-X-(1-amino)pyrazin-1-ium mesitylenesulfonates. 2-Alkylpyrazines (X = Me, Et, Pr, i-Pr) displayed a correlation between the logarithms of the concentration ratio of 2- and 3-substituted cations and substituent steric constants. Wider series of substituted pyrazines [X = H, Me, Et, Pr, i-Pr, MeCH(OH), H2N, AcNH] conformed to a multiparameter correlation between the logarithms of the concentration ratio of 2- and 3-substituted cations, on the one hand, and substituent constants σI, σRo, and E so, on the other. The obtained data on the regioselectivity of amination of pyrazines were interpreted in terms of DFT/PBE/3Z quantum-chemical calculations.  相似文献   

16.
Three new patterns of reactivity of rare‐earth metal methylidene complexes have been established and thus have resulted in access to a wide variety of imido rare‐earth metal complexes [L3Ln32‐Me)33‐Me)(μ ‐ NR)] (L=[PhC(NC6H3iPr2‐2,6)2]?; R=Ph, Ln=Y ( 2 a ), Lu ( 2 b ); R=2,6‐Me2C6H3, Ln=Y ( 3 a ), Lu ( 3 b ); R=p‐ClC6H4, Ln=Y ( 4 a ), Lu ( 4 b ); R=p‐MeOC6H4, Ln=Y ( 5 a ), Lu ( 5 b ); R=Me2CHCH2CH2, Ln=Y ( 6 a ), Lu ( 6 b )) and [{L3Lu32‐Me)33‐Me)}2(μ ‐ NR′N)] (R′=(CH2)6 ( 7 b ), (C6H4)2 ( 8 b )). Complex 2 b was treated with an excess of CO2 to give the corresponding carboxylate complex [L3Lu3(μ‐η11‐O2CCH3)3(μ‐η12‐O2C‐CH3)(μ‐η112‐O2CNPh)] ( 9 b ) easily. Complex 2 a could undergo the selective μ3‐Me abstraction reaction with phenyl acetylene to give the mixed imido/alkynide complex [L3Y32‐Me)33‐η113‐NPh)(μ3‐C?CPh)] ( 10 a ) in high yield. Treatment of 2 with one equivalent of thiophenol gave the selective μ3‐methyl‐abstracted products [L3Ln32‐Me)33‐η113‐NPh)(μ3‐SPh)] (Ln=Y ( 11 a ); Lu ( 11 b ). All new complexes have been characterized by elemental analysis, NMR spectroscopy, and most of the structures confirmed by X‐ray diffraction.  相似文献   

17.
The facile one‐pot reaction of the stable N‐heterocyclic silylene LSi: 1 (L?(ArN)C(?CH2) CH?C(Me)(NAr), Ar=2,6‐iPr2C6H3) with Me2Zn, Me3Al, H3Al‐NMe3, and MeLi has been investigated. The silicon(II) atom in 1 is capable of insertion into the corresponding M? C and Al? H bonds under very mild reaction conditions. Thus, Me2Zn furnishes the bis(silyl) zinc complex LSi(Me)ZnSi(Me)L 2 as the sole product, irrespective of the molar ratio of the starting materials applied. Moreover, the reactions of 1 with Me3Al, H3Al‐NMe3, and MeLi lead directly to the 1,1‐addition products LSi(Me)(Al(thf)Me2) 3 , LSi(H)(AlH2(NMe3)) 4 , and LSi(Me)Li(thf)3 5 , respectively. All new compounds 2 – 5 were fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

18.
Two potassium–dialkyl–TMP–zincate bases [(pmdeta)K(μ‐Et)(μ‐tmp)Zn(Et)] ( 1 ) (PMDETA=N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine, TMP=2,2,6,6‐tetramethylpiperidide), and [(pmdeta)K(μ‐nBu)(μ‐tmp)Zn(nBu)] ( 2 ), have been synthesized by a simple co‐complexation procedure. Treatment of 1 with a series of substituted 4‐R‐pyridines (R=Me2N, H, Et, iPr, tBu, and Ph) gave 2‐zincated products of the general formula [{2‐Zn(Et)2‐μ‐4‐R‐C5H3N}2 ? 2{K(pmdeta)}] ( 3 – 8 , respectively) in isolated crystalline yields of 53, 16, 7, 23, 67, and 51 %, respectively; the treatment of 2 with 4‐tBu‐pyridine gave [{2‐Zn(nBu)2‐μ‐4‐tBu‐C5H3N}2 ? 2{K(pmdeta)}] ( 9 ) in an isolated crystalline yield of 58 %. Single‐crystal X‐ray crystallographic and NMR spectroscopic characterization of 3 – 9 revealed a novel structural motif consisting of a dianionic dihydroanthracene‐like tricyclic ring system with a central diazadicarbadizinca (ZnCN)2 ring, face‐capped on either side by PMDETA‐wrapped K+ cations. All the new metalated pyridine complexes share this dimeric arrangement. As determined by NMR spectroscopic investigations of the reaction filtrates, those solutions producing 3 , 7 , 8 , and 9 appear to be essentially clean reactions, in contrast to those producing 4 , 5 , and 6 , which also contain laterally zincated coproducts. In all of these metalation reactions, the potassium–zincate base acts as an amido transfer agent with a subsequent ligand‐exchange mechanism (amido replacing alkyl) inhibited by the coordinative saturation, and thus, low Lewis acidity of the 4‐coordinate Zn centers in these dimeric molecules. Studies on analogous trialkyl–zincate reagents in the absence and presence of stoichiometric or substoichiometric amounts of TMP(H) established the importance of Zn? N bonds for efficient zincation.  相似文献   

19.
The reaction of the phosphonium metallates Me4P[C5R5(CO)(Me3P)MC(O)=CHC(O)R′] (M = W, R = H, R′ = Et (1a); M = Mo, R = Me, R′ = Me (1b)) with the silylating reagent Me3SiOSO2CF3 yields the neutral complexes C5R5(CO)(Me3P)MC(OSiMe3)=CHC(O)R (2a, 2b) bearing a chelating O(2), C(4)-trimethylsiloxybutenone ligand. The structure of the new compounds is established by the IR, 1H and 31P NMR spectra.  相似文献   

20.
The enantiomerically pure dimeric N, O‐5‐chelates [Me2In(μ‐OCH2CH(R)NMe2)]2 {R = Me (S) ( 2 ); R = iPr (S) ( 3 ); R = iBu (S) ( 4 ); R = Bz (S) ( 5 )}, and [Me2In‐{μ‐(1R, 2S)‐OCH(Ph)CH(Me)NMe2}]2 ( 6 ), as well as the achiral dimeric N, O‐6‐chelate [Me2In(μ‐O(CH2)3NMe2)]2 ( 7 ) have been synthesized from trimethylindium and equimolar amounts of the corresponding enantiomerically pure dimethylamino alcohols or of the achiral dimethylaminopropanol by elimination of methane. Their 1H NMR, 13C NMR, and mass spectra as well as the X‐ray single crystal structure analyses of [Me2In{μ‐O(CH2)2NMe2}]2 ( 1 ), 3, 5, 6 and 7 are described and discussed. The coordinative N→In bonds of the five‐coordinate indium complexes show dynamic dissociation/association processes. 1—6 were found to be useful reagents for the partial kinetic resolution of 2‐carbomethoxy‐1, 1′‐binaphthyl triflate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号