首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-molecule fluorescence photoswitching plays an essential role in ultrahigh-density (Tbits/inch(2)) optical memories and super-high-resolution fluorescence imaging. Although several fluorescent photochromic molecules and fluorescent proteins have been applied, so far, to optical memories and super-high-resolution imaging, their performance is unsatisfactory because of the absence of "non-destructive fluorescence readout capability". Here we report on a new molecular design principle of a molecule having non-destructive readout capability. The molecule is composed of acceptor photochromic diarylethene and donor fluorescent perylenebisimide units. The fluorescence is reversibly quenched when the diarylethene unit converts between the open- and the closed-ring isomers upon irradiation with visible and UV light. The fluorescence quenching is based on an electron transfer from the donor to the acceptor units. The fluorescence photoswitching and non-destructive readout capability were demonstrated in solution (an ensemble state) and at the single-molecule level. Femtosecond time-resolved transient and fluorescent lifetime measurements confirmed that the fluorescence quenching is attributed to the intramolecular electron transfer.  相似文献   

2.
The photochemical properties and the mixed‐valence state of bis(ferrocenylethynyl)benzodimethyldihydropyrene ( 1 ) and other benzodimethyldihydropyrene (BzDHP) derivatives were investigated to understand the reversible photoswitching in the electronic communication of 1 . Absorption spectra of 1 were characterized by UV/Vis spectroscopy and calculated by using time‐dependent density functional theory (TD‐DFT), and the d orbitals of the ferrocene (Fc) moieties were shown to contribute to the occupied valence orbitals that were responsible for the photochromic behavior. 1 exhibited reversible photoisomerization in THF; however, photochromic behavior was not observed in dichloromethane. Analysis of redox potentials showed that the mixed‐valence state of 1 was more stable in dichloromethane than in THF. This is consistent with the observation that chemical oxidation led to an intervalence charge‐transfer (IVCT) band between the Fc moieties in the mixed‐valence state of 1 in dichloromethane, whereas such a band was not observed for one‐electron‐oxidized 1 in THF. Bis(pentamethylferrocenylethynyl)benzodimethyldihydropyrene ( 2 ) did not show photochromic behavior even in THF. The mixed‐valence state of 2 was much less stable than that of 1 in dichloromethane, and no obvious IVCT band was observed for one‐electron‐oxidized 2 in dichloromethane. The difference in the redox contribution of Fc and pentamethylferrocene (Me5Fc) to BzDHP played an important role for these redox and photochromic behaviors; this was supported by analysis of valence orbital energies from DFT calculations. Designing molecules that connect redox centers through the use of a photochromic linker with a redox potential close to that of the redox centers could constitute a useful approach for the production of photochromic redox‐active metal complexes with strong electronic communication.  相似文献   

3.
龚涛  冯嘉春  韦玮  黄维 《化学进展》2006,18(6):698-706
本文在综述二芳基乙烯类化合物各种性能的基础上,重点介绍了二芳基乙烯类化合物作为荧光光控开关、荧光共振能量转移、光致变色电开关、光致变色磁开关、光致变色液晶开关和多功能光致变色开关的最新发展动态,以及二芳基乙烯类化合物的形态对光开关性能的影响。最后对未来光存储材料的研究趋势作了展望。  相似文献   

4.
Youngsang Kim 《Chemphyschem》2020,21(21):2368-2383
Remarkable advances in technology have enabled the manipulation of individual molecules and the creation of molecular electronic devices utilizing single and ensemble molecules. Maturing the field of molecular electronics has led to the development of functional molecular devices, especially photoswitching or photochromic molecular junctions, which switch electronic properties under external light irradiation. This review introduces and summarizes the platforms for investigating the charge transport in single and ensemble photoswitching molecular junctions as well as the electronic properties of diverse photoswitching molecules such as diarylethene, azobenzene, dihydropyrene, and spiropyran. Furthermore, the article discusses the remaining challenges and the direction for moving forward in this area for future photoswitching molecular devices.  相似文献   

5.
The first bulk electron‐transfer photochromic compound with intrinsic second‐order nonlinear optical (NLO) photoswitching properties has been synthesized. This system employs an electron‐transfer photoactive asymmetric viologen ligand coordinated to a zinc(II) center.  相似文献   

6.
A chiral and thermally irreversible photochromic fulgide derivative incorporating an (R)-binaphthol unit in its acid anhydride moiety was used for the photoswitching of the pitch length of cholesteric liquid crystals. Since the absorption maximum wavelengths of both thermally stable photoisomers are nearly in the UV region (quasi-stealth photochromism), it can be exposed to visible light without inducing photochromic reactions. Therefore, when the photoswitching molecule is added to a permanent cholesteric liquid crystal whose reflection light wavelength is in the visible region, the UV light-induced photochromic reaction of the photoswitching molecule changes the wavelength of the reflection light in the visible light region. We have succeeded in regulating the color of cholesteric liquid crystalline cells between red and blue upon UV light irradiation. Attempts to introduce this system in polymer dispersed cholesteric liquid crystals are also described.  相似文献   

7.
Two novel spirobifluorene‐diarylethenes compounds with furan ( 9a ) and thiophen ( 8a ) as heterocyclic aryl groups were successfully synthesized, and their structures were fully characterized with FTIR, NMR, mass spectra (MS), and elemental analysis. Their photochromic properties were examined. The results indicated that they showed good photochromic behaviors in hexane and acetonitrile. The fluorescence emission was quenched along with the photochromism from open ring to closed ring. Large fluorescence emission blue‐shift was clearly observed in polar solvents. Furthermore, the thermal stability of 8a and 9a was greatly improved by introducing spirobifluorene group into the molecules. The 5% loss weight temperature of 9a was 59°C higher than that of 10a without spirobifluorene.  相似文献   

8.
Photochromic reactions of diarylethene derivatives were detected at a single-molecule level by using a fluorescence technique. Fluorescent photoswitching molecules in which photochromic diarylethene and fluorescent bis(phenylethynyl)anthracene units are linked through an adamantyl spacer were synthesized, and switching of fluorescence upon irradiation with UV and visible light was followed in solution as well as on polymer films at the single-molecule level. Although in solution the fluorescence intensity gradually changed upon irradiation with UV and visible light, digital on/off switching between two discrete states was observed at the single-molecule level. The "on"- and "off"-times were dependent on the power of UV and visible light. When the power of UV and visible light was increased, the average on- and off-times became short in proportion to the reciprocal power of the light. The response-times were found to show distribution. The distribution of the on- and off-times is considered to reflect the difference in the micro-environment as well as conformation of the molecules.  相似文献   

9.
Nanoparticles (NPs) and molecules can be analyzed by inverse fluorescence correlation spectroscopy (iFCS) as they pass through an open detection volume, displacing fractions of the fluorescence‐emitting solution in which they are dissolved. iFCS does not require the NPs or molecules to be labeled. However, fluorophores in μm –mm concentrations are needed for the solution signal. Here, we instead use coherent anti‐Stokes Raman scattering (CARS) from plain water molecules as the signal from the solution. By this fully label‐free approach, termed inverse CARS‐based correlation spectroscopy (iCARS‐CS), NPs that are a few tenths of nm in diameter and at pM concentrations can be analyzed, and their absolute volumes/concentrations can be determined. Likewise, lipid vesicles can be analyzed as they diffuse/flow through the detection volume by using CARS fluctuations from the surrounding water molecules. iCARS–CS could likely offer a broadly applicable, label‐free characterization technique of, for example, NPs, small lipid exosomes, or microparticles in biomolecular diagnostics and screening, and can also utilize CARS signals from biologically relevant media other than water.  相似文献   

10.
This minireview highlights recent advances of research dedicated to photoswitchable fluorescent nanoparticles and their applications. Recently, several strategies have been developed to synthesize nanoparticles with optically switchable emission properties: either fluorescence on/off or dual‐alternating‐color fluorescence photoswitching. The underlying mechanisms of fluorescence photoswitching enable many different types of photoswitchable fluorescent nanoparticles to change fluorescence colors, thus validating the basis of the initial photoswitching design. Among all possible applications, the usage of photoswitchable fluorescent nanoparticles to empower super‐resolution fluorescence imaging and to label biological targets was subsequently reviewed. Finally, we summarize the important areas regarding future research and development on photoswitchable fluorescent nanoparticles.  相似文献   

11.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

12.
Improving the photoswitching rate and robustness of photochromic molecules in bulk solids is paramount for practical applications but remains an on-going challenge. Here, we introduce an octupolar design paradigm to develop a new family of visible light organic photoswitches, namely multi-branched octupolar Stenhouse Adducts (MOPSAs) featuring a C3-symmetrical A3-(D-core) architecture with a dipolar donor–acceptor (D–A) photochrome in each branch. Our design couples multi-dimensional geometric and electronic effects of MOPSAs to enable robust ultrafast reversible photoswitching in bulk polymers. Specifically, the optimal MOPSA (4 wt %) in commercial polyurethane films accomplishes nearly 100 % discoloration in 6 s under visible light with ∼ 100 % thermal-recovery in 17.4 s at 60 °C, while the acquired kinetics constants are 3∼7 times that of dipolar DASA counterpart and 1∼2 orders of magnitude higher than those of reported DASAs in polymers. Importantly, the MOPSA-doped polymer films sustain 500 discoloration/recovery cycles with slow degradation, superior to the existing DASAs in polymers (≤30 cycles). We discover that multi-dipolar coupling in MOPSA enables enhanced polarization and electron delocalization, promoting the rate-determining thermal cyclization, while the branched and non-planar geometry of MOPSA induces large free volume to facilitate the isomerization. This design can be extended to develop spiropyran or azobenzene-based ultrafast photochromic films. The superior photoswitching performance of MOPSAs together with their high-yield and scalable synthesis and facile film processing inspires us to explore their versatile uses as smart inks or labels for time-temperature indicators, optical logic encryption and multi-levelled data encryption.  相似文献   

13.
Robust fluorescent photoswitching molecules, having perylene bisimide as the fluorescent unit and diarylethene as the switching unit, were prepared, and their photochromic reactions were measured at the single-molecule level in various polymer matrices. The histograms of the fluorescent on and off times were found to deviate from normal exponential distribution and showed a peak when the molecules are embedded in rigid polymer matrices, such as Zeonex or poly(methyl methacrylate) (PMMA). In soft polymer matrices, such as poly(n-buthyl methacrylate) (PnBMA), exponential distribution was observed for the on and off times. The abnormal distribution suggests that the quantum yields of the photoreactions are not constant and the molecules undergo the reactions after absorbing a certain number of photons. A multilocal minima model was proposed to explain the environmental effect.  相似文献   

14.
A fluorescent, diselenide‐containing 9,10‐distyrylanthracene (DSA) derivative (SeDSA) with aggregation‐induced emission (AIE) characteristic was successfully synthesized and SeDSA nanoparticles (NPs) were prepared through a nanoprecipitation method. SeDSA could coassemble with an antitumor prodrug, diselenide‐containing paclitaxel (SePTX), which could be obtained by precipitation, to form SeDSA‐SePTX Co‐NPs (Co‐NPs). Molecular dynamics (MD) simulations reveal that the driving forces for the self‐assembly behaviors of SeDSA NPs and SePTX NPs are π–π interactions and hydrophobic interactions, respectively, while the driving forces for Co‐NPs include hydrophobic interactions between SeDSA and SePTX, π–π interactions between SeDSA molecules and hydrophobic interactions between SePTX molecules. Meanwhile, Se‐Se bonds play a crucial role in balancing the intramolecular forces. These diselenide‐containing nanoparticles (SeDSA NPs, SePTX NPs and Co‐NPs) exhibit a high stability under physiological conditions and excellent reduction‐sensitivity in the presence of the redox agent glutathione (GSH) because of the selenium‐sulfur exchange reaction between diselenide and GSH. Both SeDSA NPs and Co‐NPs show strong orange fluorescence emissions on the account of the AIE feature of SeDSA and they were easily internalized by HeLa and HepG2 cells. Distinctively, the Co‐NPs combine the advantage of SeDSA and SePTX for cell imaging and antineoplastic activity, and exhibit selectivity of cytotoxicities between neoplasia cells and normal cells. This study highlights the development of diselenide‐containing AIEgens as a unique approach to prepare uniform and stable fluorescent nanoparticles for the application in cell imaging and tumor treatment.  相似文献   

15.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

16.
A study on the photoswitching behavior of azobenzene-based polar hockey-stick-shaped liquid crystals (HSLCs) has been presented. Two new series of five phenyl rings based polar HSLCs have been designed and synthesized. Solution state photoisomerization of the synthesized materials was investigated thoroughly via UV-visible and 1H NMR spectroscopic techniques, whereas solid-state photochromic behavior was elucidated via physical color change of the materials, solid-state UV-visible study, powder XRD, and FE-SEM techniques. The materials exhibited decent photochromic behavior for different potential applications. The thermal phase behavior of the superstructural assembly has been characterized via polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and temperature-dependent small and wide-angle X-ray scattering (SAXS/WAXS) studies. Depending upon the length of the terminal alkyl chain, nematic (N) and partially bilayer smectic A (SmAd) phases were observed. DFT calculations revealed the favorable anti-parallel arrangement of the polar molecules that substantiate the formation of SmAd phase.  相似文献   

17.
The photochromic diarylethene, 1,2-bis[2-methyl-5-(3-trifluoromethylphenyl)-3-thienyl]perfluorocyclopentene (BMTTP), was synthesized and its photochromic kinetics, fluorescence and X-ray structure were investigated. This compound underwent a photochromic reaction both in solution and the single crystalline phase. Its cyclization/cycloreversion process was determined to be zeroth/first order reaction, respectively, and this is the first report on the cyclization/cycloreversion reaction order. In addition, its fluorescence property was also discussed.  相似文献   

18.
Photochromic systems with an ultrahigh rate of thermal relaxation are highly desirable for the development of new efficient photochromic oscillators. Based on DFT calculations, we designed a series of 5‐phenylazopyrimidines with strong push–pull character in silico and observed very low energy barriers for the thermal (Z)‐to‐(E) isomerization. The structure of the (Z)‐isomer of the slowest isomerizing derivative in the series was confirmed by NMR analysis with in situ irradiation at low temperature. The substituents can tune the lifetime of thermal back isomerization from hundreds of microseconds to several nanoseconds (8 orders of magnitude). The photoswitching parameters were extracted from transient absorption techniques and a dominant rotation mechanism of the (Z)‐to‐(E) thermal fading was proposed based on DFT calculations.  相似文献   

19.
This paper describes a promising method to synthesize supported metal catalysts based on a photochromic reaction. Highly dispersed Ag nanoparticles (NPs) with a mean diameter of ca. 10 nm stabilized by 3-mercaptopropionic acid (3-MPA) were prepared as a colloidal precursor solution. The zeta electric potential was found to be negatively charged in the region of pH higher than 5 due to the presence of dissociated carboxylate ions (-COO(-)), which led to electric repulsion between Ag NPs and kept the solution in a highly dispersed colloidal state. In the presence of photochromic molecules, trans-2-hydroxychalcone, the photo-irradiation gradually decreased the electric charge on the nanoparticles owing to the formation of flavylium cations, which induced the assembly of Ag NPs. Such photo-induced assembly-dispersion control of Ag NPs enables size selective deposition on a catalyst support, which is controlled by varying the photo-irradiation time.  相似文献   

20.
Photoswitching of the intramolecular magnetic interaction was demonstrated using diarylethenes with 2,5-bis(arylethynyl)-4-methyl-3-thienyl side group. Two nitroxide radicals were placed at each end of the 2,5-bis(arylethynyl)-4-methyl-3-thienyl group. Three kinds of aryl groups, 2,5-thienylene, p-phenylene, and m-phenylene groups, were used in the arylethynyl moiety. The diarylethene photoswitching units have an extended pi-conjugated chain on one side of the diarylethene. The photochromic reactivity was dependent on the arylethynyl group. Diarylethenes with m-phenylene group showed an efficient photochromic reactivity. Along with the photochromic reaction the diarylethenes showed photoswitching of an ESR spectrum originating from the change in the magnetic interaction between two unpaired electrons. The open-ring isomer showed stronger exchange interaction than the photogenerated closed-ring isomer. The magnetic interaction between two radicals via the pi-conjugated chain was altered by photocyclization due to the change of the hybrid orbital at the 2-position of the thiophene ring from sp(2) to sp(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号