首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Gd5(L)16(H2O)8](Tf2N)15 was obtained from reaction of Gd2O3 with 1-carboxymethyl-3-ethylimidazolium chloride (LHCl). The material was found to be an ionic liquid that freezes to glassy state on cooling to −30 °C. Variable-temperature magnetic studies reveal the presence of weak magnetic intramolecular interactions in the glass. Isothermal variable-field magnetization demonstrates a magnetocaloric effect (MCE), which is the first finding of such an effect in a molecular glass. This MCE is explainable by an uncoupled representation, with a magnetic entropy change of −11.36 J K−1 kg−1 at 1.8 K for a 0–7 T magnetic field change, and with a refrigerant capacity of 125.9 J kg−1, in the 1.8-50 K interval.  相似文献   

2.
A metal coordination polymer, {[Mn2Mo(CN)8(C12H8N6)(CH3CN)2(H2O)2]·2H2O}n, has been synthesized by the reaction of Mn(ClO4)2·6H2O with 3,6‐bis(pyridin‐2‐yl)‐1,2,4,5‐tetrazine (bptz) and (Bu3N)3[Mo(CN)8] at room temperature. The polymer was characterized by IR spectroscopy, elemental analysis and X‐ray diffraction, and the magnetic properties were also investigated. The X‐ray diffraction analysis reveals that the compound is a new three‐dimensional coordination polymer with a PtS‐type network. Magnetic investigation shows antiferromagnetic coupling between adjacent Mn2+ cations.  相似文献   

3.
Under different temperatures and concentrations, the diffusion of Vitamin C (VC) in water solution was examined by molecular dynamics simulation. The diffusion coefficients were calculated based on the Einstein equation. The influences of temperature, concentration, and simulation time on the diffusion coefficient were discussed. The results showed that at higher temperature and lower concentration the normal diffusions appear relatively late, but the linear range of mean square displacement curves continues longer than that at lower temperature and higher concentration. At the same temperature, the normal diffusion time increases and the diffusion coefficient decreases as the simulation concentration increases. These simulation results are in good agreement with experiments. Analyses of the pair correlation functions of the simulation systems showed that hydrogen bonds are mainly formed between the hydrogen atoms of VC molecules and oxygen atoms of H2O molecules, rather than between the O atoms of VC molecules and H atoms of H2O molecules. The diffusion coefficient is higher as the interaction between water molecules and VC molecules is stronger when VC concentration is lower. The water in the model systems affects the diffusion of VC molecules by the short‐range repulsion of O(H2O)‐O(H2O) pairs and the non‐bond interaction of H(H2O)‐H(H2O) pairs. The short‐range repulsion of O(H2O)‐O(H2O) pairs is greater when VC concentration is higher, the diffusion of VC is weaker. The greater the non‐bond interaction of H(H2O)‐H(H2O) pairs is, the higher the VC diffusion is. It is expected that this study can provide a theoretical direction for the experiments on the mass transfer of VC in water solution.  相似文献   

4.
A one‐dimensional cyanide‐bridged coordination polymer, poly[[aquadi‐μ‐cyanido‐κ4C:N‐hexacyanido‐κ6C‐(dimethylformamide‐κO)bis(3,4,7,8‐tetramethyl‐1,10‐phenanthroline‐κ2N,N′)terbium(III)molybdate(V)] 4.5‐hydrate], [MoTb(CN)8(C16H16N2)2(C3H7NO)(H2O)]·4.5H2O}n, has been prepared and characterized through IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The compound consists of one‐dimensional chains in which cationic [Tb(tmphen)2(DMF)(H2O)]3+ (tmphen is 3,4,7,8‐tetramethyl‐1,10‐phenanthroline) and anionic [MoV(CN)8]3− units are linked in an alternating fashion through bridging cyanide ligands. Neighbouring chains are connected by three types of hydrogen bonds (O—H...O, O—H...N and C—H...O) and by π–π interactions to form a three‐dimensional supramolecular structure. In addition, magnetic investigations show that ferromagnetic interactions exist in the compound.  相似文献   

5.
Two new novel complexes, [Cu4(Endc)4(phen)4]⋅7(H2O)⋅2(O) and [Mn2(Endc)2(phen)2(H2O)2]⋅(H2O) (phen =1,10‐phenanthroline, H2Endc = endo ‐norbornene‐cis ‐5,6‐dicarboxylic acid), were synthesized and structurally characterized using IR and 1H NMR spectroscopies, elemental analysis and single‐crystal X‐ray diffractometry. Their reactivity with calf thymus DNA and HeLa cell DNA was measured using UV absorption and fluorescence spectroscopies. The results indicated that these complexes can bind to DNA with different binding affinity. Gel electrophoresis assay demonstrated the ability of the complexes to cleave pBR322 plasmid DNA. Apoptotic study showed that the complexes exhibit significant cancer cell inhibitory rates. Eventually, the complexes can suitably dock with a special DNA (PDB ID: 1AIO).  相似文献   

6.
Hydrothermal reactions generated a cobalt–hypoxanthine framework [Co3(OH)4(Hpxt)2]?2 H2O (H2pxt=6‐hydroxypurine, 1 ?2 H2O), which became a microporous framework [Co3(OH)4(Hpxt)2] ( 1 ) through a single‐crystal‐to‐single‐crystal transformation. Compound 1 ?2 H2O shows a three‐dimensional umr topological structure with two types of spiral channels constructed by rod‐shaped {Co3(μ‐OH)4(N‐C‐N)2(N‐C‐C‐O)2} second building units (SBUs). The larger channel is filled by fourfold spiral water chains. An unprecedented μ5‐O6,N3,N7,N9 coordination mode of the Hpxt anion was observed. Both complexes 1 ?2 H2O and 1 qualitatively show similar metamagnetism from anti‐parallel to parallel ferromagnetic cobalt‐hydroxide chains. Compared with 1 ?2 H2O, a smaller Curie constant and more negative Weiss constant in 1 indicate that the helical water chains tend to suppress antiferromagnetic coupling between Co3(OH)4 ferromagnetic chains. Detailed magnetic studies of 1 ?2 H2O revealed that the competitive interactions between interchain antiferromagnetic exchange coupling and single‐ion anisotropy of CoII resulted in a partly canted antiferromagnetic sate in low fields. Anti‐parallel arrangement of adjacent ferromagnetic chains in middle fields gives 3D antiferromagnetic ordering, and magnetic ground states in high fields are a parallel arrangement of ferromagnetic chains.  相似文献   

7.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

8.
A new Schiff base hydrazone (Z)‐2‐(2‐aminothiazol‐4‐yl)‐N′‐(2‐hydroxy‐3‐methoxybenzylidene) acetohydrazide (H2L) and its chelates [VO (HL)2]·5H2O, [Cu (HL)Cl(H2O)]·2H2O and [Fe(L)Cl(H2O)2]·3H2O have been isolated and characterized using different physico‐chemical methods, for example infrared (IR), electron paramagnetic resonance (EPR), thermogravimetric analysis and DTG in the solid state, and 1H‐NMR, 13C‐NMR and UV in solution. Magnetic and UV–visible measurements proposed that the coordination environments are square pyramidal, tetrahedral and octahedral geometries for oxovanadium (IV), Cu (II) and Fe (III), respectively. The ligand acts as mono‐negative NO towards oxovanadium (IV) and Cu (II) ions, and bi‐negative ONO for Fe (III) ion. The geometries of the ligand and its complexes were performed using Gaussian 9 program with density functional theory. The EPR spectral data of oxovanadium (IV) and Cu (II) chelates confirmed the mentioned geometries. The molecular modeling was done, and illustrated bond lengths, bond angles, molecular electrostatic potential, Mulliken atomic charges and chemical reactivity for the inspected compounds. Theoretical IR and 1H‐NMR of the free ligand were calculated. Furthermore, thermodynamic and kinetic parameters for thermal decomposition steps were studied. Docking study of H2L was applied against the proteins of both bacterial strains Staphylococcus aureus and Escherichia coli, as well as the protein of xanthine oxidase as antioxidant agent by Schrödinger suite program utilizing XP glide protocol. Furthermore, antimicrobial, antioxidant and DNA‐binding activities of the compounds have been carried out.  相似文献   

9.
Two heterospin complexes [Cu(NIT3Py)(cda)H2O] · H2O ( 1 ) and [Cu(NIT2Py)(cda)H2O] · H2O · CH3OH ( 2 ) with CuII ions and pyridyl‐substituted nitronyl nitroxide radicals (NITxPy = 2‐(x′‐pyridyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide, x = 3, 2; H2cda = 4‐hydroxy‐pyridine‐2,6‐dicarboxylic acid) were synthesized and characterized structurally and magnetically. The single crystal structures show that the two complexes are both two‐spin complexes, in which the different radicals make the two complexes have different hydrogen bonding interactions to form 2D and 1D supramolecular network for complexes 1 and 2 , respectively. The magnetic measurements indicate that complexes 1 and 2 both exhibit antiferromagnetic interactions between CuII and radicals.  相似文献   

10.
The tape‐like chain {[(tptz)MnII(H2O)MnIII(CN)6]2MnII(H2O)2}n?4n MeOH?2n H2O based on the anisotropic building block hexacyanomanganate(III) exhibits long‐range magnetic ordering below 5.1 K as well as single‐chain magnetic behavior at lower temperatures with an effective energy barrier of 40.5(7) K.  相似文献   

11.
A novel complex [Cu(NnpPy)2(HlTCB)(H1O)]·2H2O (NITpPy = 2‐(pyrid‐4′‐yl)‐4,4,5,5‐tetramethyl‐1, 3‐dioxoimidazoline; H2TCB = 1, 5‐dicarboxybenzene carboxylic‐2, 4‐diacid) has been synthesized and characterized by X‐ray crystallography analysis. The crystal structure consists of infinite chains of Cu‐(NITpPy)2(H2O) units linked by H2TCB ligands. The complex crystallizes in triclinic system with space group PI. Crystal data: a = 1.0594(2) nm, b = 1.3830(3) nm, c = 1.5551(3) nm, a = 67.75(3)°, β = 89.83(3)°, γ = 70.54(3)°. The variable magnetic susceptibility studies lead to magnetic coupling constant values of J1= ?11.18 cm‐1 (Cu—Rad) and J2 = ?4.06 cm?1 (Cu—Cu).  相似文献   

12.
A new metal‐organic network [Co3(tbip)3(H2O)4] · 2H2O ( 1 ) (H2tbip = 5‐tert‐butyl‐isophthalic acid) was synthesized through the ionothermal reaction of H2tbip, cobalt nitrate, and [bmim]Br ionic liquid ([bmim]Br = 1‐butyl‐3‐methylimidazolium bromide). It exhibits a three‐dimensional (3D) framework with NaCl topology based on trinuclear cobalt(II) clusters as nodes. The magnetic studies show that there exist antiferromagnetic interactions between the CoII ions.  相似文献   

13.
The synthesis, crystal structure, and magnetic properties of a [MnIII3MnII3‐O)(mbp)3(OAc)3] · 4H2O ( 1 ) [H2mbp = 2‐(1H‐benzimidazol‐2‐yl)‐2‐ methylpropane‐1,3‐diol] cluster are reported herein. Mn ions in compound 1 have a tetrahedron topology. Solid‐state direct current and alternating current magnetic susceptibility measurements on compound 1 reveal a ground state with ST = 7/2 as well as the probable single‐molecule magnetic behavior.  相似文献   

14.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde and N‐benzylmethylamine under microwave irradiation gives 5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C19H19N3O, (I). Subsequent reactions under basic conditions, between (I) and a range of acetophenones, yield the corresponding chalcones. These undergo cyclocondensation reactions with hydrazine to produce reduced bipyrazoles which can be N‐formylated with formic acid or N‐acetylated with acetic anhydride. The structures of (I) and of representative examples from this reaction sequence are reported, namely the chalcone (E )‐3‐{5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl}‐1‐(4‐bromophenyl)prop‐2‐en‐1‐one, C27H24BrN3O, (II), the N‐formyl derivative (3RS )‐5′‐[benzyl(methyl)amino]‐3′‐methyl‐1′,5‐diphenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole]‐2‐carbaldehyde, C28H27N5O, (III), and the N‐acetyl derivative (3RS )‐2‐acetyl‐5′‐[benzyl(methyl)amino]‐5‐(4‐methoxyphenyl)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole], which crystallizes as the ethanol 0.945‐solvate, C30H31N5O2·0.945C2H6O, (IV). There is significant delocalization of charge from the benzyl(methyl)amino substituent onto the carbonyl group in (I), but not in (II). In each of (III) and (IV), the reduced pyrazole ring is modestly puckered into an envelope conformation. The molecules of (I) are linked by a combination of C—H…N and C—H…π(arene) hydrogen bonds to form a simple chain of rings; those of (III) are linked by a combination of C—H…O and C—H…N hydrogen bonds to form sheets of R 22(8) and R 66(42) rings, and those of (IV) are linked by a combination of O—H…N and C—H…O hydrogen bonds to form a ribbon of edge‐fused R 24(16) and R 44(24) rings.  相似文献   

15.
Three new nickel(II) complexes constructed with N‐(2‐hydroxybenzyl)‐β‐alanine (H2L), namely [NiL(phen)H2O]·H2O ( 1 ) (phen = 1.10‐phenanthroline), [Ni4L4(H2O)4]·5H2O ( 2 ) and K[Ni4L4(NCS)(H2O)5]·5.42H2O ( 3 ) have been synthesized and characterized by single‐crystal X‐ray diffraction analysis. Complex 1 exhibits a discrete structure, and the structures are bound together through hydrogen bonding to a one‐dimensional chain in ladder‐like fashion. Complexes 2 and 3 contain similar [Ni42‐O)6] cores with “zig‐zig” arrangement. In complex 3 , the tetranuclear nickel units [Ni4L4(H2O)4] and [Ni4L4(NCS)(H2O)] are alternately bridged by potassium atoms to a one‐dimensional chain. The neighboring chains are further linked up by {K2O2} units to a two‐dimensional layer structure. Moreover, the IR, XRD, TGA and the temperature‐dependent magnetic susceptibility for 2 and 3 have also been studied.  相似文献   

16.
By using paramagnetic [Fe(CN)6]3? anions in place of diamagnetic [Co(CN)6]3? anions, two field‐induced mononuclear single‐molecular magnets, [Nd(18‐crown‐6)(H2O)4][Co(CN)6] ? 2 H2O ( 1 ) and [Nd(18‐crown‐6)(H2O)4][Fe(CN)6] ? 2 H2O ( 2 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction analysis revealed that compounds 1 and 2 were ionic complexes. The NdIII ions were located inside the cavities of the 18‐crown‐6 ligands and were each bound by four water molecules on either side of the crown ether. Magnetic investigations showed that these compounds were both field‐induced single‐molecular magnets. By comparing the slow relaxation behaviors of compounds 1 and 2 , we found significant differences between the direct and Raman processes for these two complexes, with a stronger direct process in compound 2 at low temperatures. Complete active space self‐consistent field (CASSCF) calculations were also performed on two [Nd(18‐crown‐6)(H2O)4]3+ fragments of compounds 1 and 2 . Ab initio calculations showed that the magnetic anisotropies of the NdIII centers in complexes 1 and 2 were similar to each other, which indicated that the difference in relaxation behavior was not owing to the magnetic anisotropy of NdIII. Our analysis showed that the magnetic interaction between the NdIII ion and the low‐spin FeIII ion in complex 2 played an important role in enhancing the direct process and suppressing the Raman process of the single‐molecular magnet.  相似文献   

17.
Two one‐dimensional (1‐D) chain manganese‐nitroxide complexes {[Mn(NIT4Py)2(ip)(H2O)2]·4H2O}n ( 1 ) and [Mn(IM4Py)2(ip)(H2O)2]n ( 2 ) (NIT4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl and ip = isophthalate anion) have been synthesized and characterized by elemental analyses, IR spectrum and electronic absorption spectra. Complex 1 was structurally characterized and it crystallizes in neutral 1‐D chains where MnII nitroxide units [Mn(NIT4Py)2(H2O)2] are linked by isophthalate anions. The magnetic measurements show that complex 1 exhibits antiferromagnetic couplings, while complex 2 exhibits ferromagnetic interactions between the MnII ion and the nitroxide radicals.  相似文献   

18.
New dinuclear complexes of the types [Ni2(L)(H2O)2] and [Ni2(L)(H2O)6] [H4L = N,N′‐bis(carboxymethyl) dithiooxamide (H4GLYDTO), N,N′‐bis(1‐carboxyethyl) dithiooxamide (H4ALADTO), N,N′‐bis(1‐carboxy‐2‐methylpropyl) dithiooxamide (H4VALDTO) and N,N′‐bis(1‐carboxy‐3‐methylbutyl) dithiooxamide (H4LEUDTO)] have been prepared and characterized by IR and electronic absorption spectroscopy, and the structure of [Ni2(ALADTO)(H2O)6] crystals has been determined by single crystal X‐ray analysis. This compound is composed of discrete dinuclear units in which two NiII atoms with NO4S kernels are linked by a single [ALADTO]4– group that coordinates through its carboxylato oxygen, amino nitrogen and thiolato sulphur atoms. In each dimer unit the two nickel(II) ions in distorted octahedral coordination are separated by 5.863(2) Å The temperature dependence of the magnetic susceptibility of the new compounds was measured over the range 2 to 300 K. In the complexes of [GLYDTO]4– and [ALADTO]4– the two Ni atoms are antiferromagnetically coupled, with J = –23.51(4) and –20.95(8) cm–1, respectively. By constrast, [Ni2(VALDTO)(H2O)2], [Ni2(VALDTO)(H2O)6] and [Ni2(LEUDTO)(H2O)2] remain paramagnetic down to 2 K, with magnetic moment values between 2.8 and 3.3 M.B.  相似文献   

19.
The synthesis and physico‐chemical characterization of an FeII complex [Fe( L1 )3](ClO4)2?CH3CN?0.5H2O, 1 , incorporating a bidentate imidazolylimine‐based ligand are reported. Complex 1 crystallises as the mer‐isomer and the crystal lattice is replete with hydrogen bonding interactions between ClO4? anions, solvent molecules and imidazole N‐H groups. Variable‐temperature structural, magnetic, photomagnetic and optical reflectivity techniques have been deployed to fully characterise the spin‐crossover (SCO) behaviour in 1 along with its desolvated phase, 1?desolv . Variable‐temperature (1.8–300 K) magnetic‐susceptibility measurements reveal a broad two‐step full SCO for 1 (T1/2=158 and 184 K) and photomagnetic experiments at 10 K under white‐light irradiation revealed complete photo‐induced SCO. 1?desolv displays considerably different magnetic behaviour with sharp single‐step SCO accompanied by a thermal hysteresis (T1/2↑=105 K, T1/2↓=95 K) in addition to full photo‐induced SCO at lower temperatures.  相似文献   

20.
New seven complexes of N1,N6‐bis((2‐hydroxynaphthalin‐1‐yl)methinyl))adipohydrazone (H2L) with MnCl2•4H2O, CoCl2•6H2O, NiCl2•6H2O, CuCl2•2H2O, Cu(NO3)2•3H2O, CuSO4•5H2O, and Cu(OAc)2•2H2O have been prepared and characterized by the aid of elemental and thermal analyses, spectra (FT‐IR, 1H NMR, MS, UV‐Vis, ESR, X‐ray powder diffraction), molar conductance and magnetic moment measurements. The XRD results unambiguously confirmed the nano‐sized particles of the complexes. The results showed that H2L behaves as dibasic tetra‐dentate ligand towards the metal ions of interest. The low molar conductance values revealed the non‐electrolytic nature for the chelates. The magnetic moment data, UV‐Vis and ESR spectra denoted the formation of octahedral geometries for Mn(II) and Ni(II) complexes, whereas Co(II), Cu(II) complexes exhibited tetrahedral arrangement. The activation parameters for the thermal decomposition stages were calculated from TGA curves using Coats‐Redfern and Horowitz–Metzger methods. The obtained data were confirmed by 3‐D molecular modeling of the ligand and some complexes. The investigated compounds were screened for their antimicrobial activities against different types of organisms and antitumor activities towards human liver Carcinoma (HEPG2) cell to access their potential chemotherapeutic use. The free ligand (H2L) exhibited a weak inhibition of cell viability with IC50 of 11.80 μg/ml, complexes 4 , 6 and 7 showed a moderate activity with IC50 of 5.56, 7.71 and 5.67 μg/ml, whereas complexes 1 , 2 , 3 , and 5 displayed a strong anticancer activity with IC50 of 4.65, 3.97, 3.30 and 4.84 μg/ml, compared with IC50 value of 4.73 μg/ml for the doxorubicin (standard cytotoxin drug).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号