首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A tridentate ONN donor Schiff-base hydrazone ligand, H2L, was synthesized by the condensation of 2-amino-4-hydrazino-6-methyl pyrimidine with o-hydroxyacetophenone. The structure of the ligand was elucidated by IR and 1H NMR spectra which indicated the presence of three different coordinating groups, the oxygen atom of the phenolic OH group, the nitrogen atom of the azomethine, C=N, group and one of the nitrogen atoms of the heterocyclic ring. The ligand behaves either as a tridentate (N2O sites) neutral, mono- or di-basic ligand or as a bidentate (NO sites) monobasic ligand depending on the pH of the reaction medium and the metal ion. The mass spectrum of the ligand showed the presence of the molecular ion peak. Different types of metal complexes, mononuclear such as [(HL)M(OAc)]·xH2O (M = Cu or Zn), [(HL)M(OAc)H2O]·xH2O (M = Ni or UO2), [(HL)Co(OH2)Cl]·2H2O, [(H2L)FeCl3]·3½H2O, [(L)FeCl(H2O)2]· 2¼H2O, [(HL)L'FeCl(H2O)]·H2O (L' = 8-hydroxyquinoline, 8-HQ), [(HL)L'FeCl]Cl·xH2O (L' = 1,10-phenanthroline, phen, or 2,2'-bipyridyl, bpy) and [(HL)L'Cu]·ClO4 (L' = phen). Also, binuclear complexes with oxalic acid of the type [(HL)ClFe(ox)FeCl(HL)], [(HL)Cu(ox)Cu(HL)] were obtained. The IR spectra of the binuclear complexes indicated that the oxalate anion acts as a bridging tetradentate ligand. Elemental analyses, IR, electronic and ESR spectra as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. Square-planar geometry is suggested for the Cu(II) complex, octahedral geometry for the Fe(III), Ni(II) complexes, tetrahedral geometry for the Co(II) and Zn(II) complexes and pentagonal-bipyramidal geometry for the UO2(VI) complex.  相似文献   

2.

A tridentate ONN donor ligand, 5-methyl-3-(2-hydroxyphenyl)pyrazole; H2L, was synthesized by reaction of 2-(3-ketobutanoyl)phenol with hydrazine hydrate. The ligand was characterized by IR, 1H NMR and mass spectra. 1H NMR spectra indicated the presence of the phenolic OH group and the imine NH group of the heterocyclic moiety. Different types of mononuclear metal complexes of the following formulae [(HL)2M][sdot]xH2O (M=VO, Co, Ni, Cu, Zn and Cd), [(HL)2M(H2O)2] (M=Mn and UO2) and [(HL)LFe(H2O)2] were obtained. The Fe(III) complex, [(HL)LFe(H2O)2] undergoes solvatochromism. Elemental analyses, IR, electronic and ESR spectra as well as thermal, conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. A square-pyramidal geometry is suggested for the VO(IV) complex, square-planar for the Cu(II), Co(II) and Ni(II) complexes, octahedral for the Fe(III) and Mn(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes, while the UO2(VI) complex is eight-coordinate. Transmetallation of the UO2(VI) ion in its mononuclear complex by Fe(III), Ni(II) or Cu(II) ions occurred and mononuclear Fe(III), Ni(II) and Cu(II) complexes were obtained. IR spectra of the products did not have the characteristic UO2 absorption band and the electronic spectra showed absorption bands similar to those obtained for the corresponding mononuclear complexes. Also, transmetallation of the Ni(II) ion in its mononuclear complex by Fe(III) has occurred. The antifungal activity of the ligand and the mononuclear complexes were investigated.  相似文献   

3.
Two different metal complexes of [Co(HL)(L)(Ac)2]·4H2O (I) and [Ni2(L)2(Ac)2]·4H2O (II), have been synthesized with newly prepared amine-imine-oxime ligand [HL = 3-(4′-aminobiphenyl-4-ylimino)-butan-2-one oxime, Ac = CH3COO]. This ligand HL was prepared by the condensation of diacetylmonoxime with benzidine. The structure of the ligand and complexes have been proposed by elemental analyses, IR, 1H, and 13C NMR, electronic spectra, magnetic susceptibility measurements, mass spectra, molar conductivity and thermo gravimetric analysis. The molar conductance measurements of the complexes in DMF solution correspond to non electrolytic nature for the complexes. Octahedral and tetrahedral geometries have been determined to the complexes of Co(III) and binuclear Ni(II) respectively. The ligand and its metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive (Bacillus subtilis and Staphylococcus aureus) and one fungal specie (Candida albicans) were found. They were inactive against tested gram negative bacteria. The text was submitted by authors in English.  相似文献   

4.
New carbohydrazone ligand derived from the condensation of carbohydrazide and ethyl acetoacetate, diethyl 3,3′‐(carbonylbis (hydrazin‐2‐yl‐1‐ylidene))(3E,3′E)‐dibutyrate (H4EBC), and its divalent Co, Ni and Cu chelates have been isolated and characterized utilizing convenient methods. 1H‐NMR spectrum of H4EBC revealed the abundance of the enol isomer in solution, which was the opposite to what was shown by the solid IR. This was supported by comparing the theoretical IR of both keto and enol forms. In [Ni(H4EBC)Cl2(H2O)]·2H2O, H4EBC acts as a neutral NON tridentate ligand via the (C=O)carbonyl oxygen atom besides the two (C=N)azomethine nitrogen atoms, while in [Co(H4EBC)Cl2(2H2O)]·2H2O, H4EBC behaves as a neutral NN bidentate ligand through the two azomethine groups. Magnetic measurements inherent to their electronic spectra show that both Ni (II) and Co (II) chelates have octahedron coordination frameworks. On the other hand, the ligand behaves as a binegative tetradentate in [Cu2(H4EBC)Cl2]·H2O via the deprotonated (C=O)carbonyl groups of the ethyl acetoacetate framework and the two (C=N)azomethine groups. In the latter complex, the carbonyl group of the carbohydrazide moiety is converted to hydroxyl group. Cu (II) complex has a tetrahedral geometry according to ESR and electronic spectral data. The reaction of H4EBC with SmCl3·6H2O or LnCl3·7H2O gave single crystals of abnormal product (C16H16N4O4). The packing diagram of this crystal has a chain structure. The photoluminescence spectra of [Cu 2 (H 4 EBC)Cl 2 ]·H 2 O , [Co(H 4 EBC)Cl 2 (H 2 O) 2 ]·2H 2 O and [Ni(H 4 EBC)Cl 2 (H 2 O)]·2H 2 O display emission broad‐bands at 342, 321 and 337 nm, respectively. The microbial behavior of the synthesized moieties was investigated against various bacterial and fungal strains. [Cu2(H4EBC)Cl2]·H2O complex shows the same activity as ampicillin towards Escherichia coli and Staphylococcus aureus with inhibition zones of 26 and 22 mm, respectively. Antioxidant activity is determined using bleomycin‐dependent DNA damage assay besides erythrocyte hemolysis. Finally, in vitro cytotoxic activities against two different cell lines have been examined.  相似文献   

5.
Three new mixed‐ligand coordination polymers of CuII, namely, [Cu(Fbtx)(L1)(H2O)]n ( 1 ), [Cu(Fbtx)0.5(HL2)(H2O)2]n ( 2 ), and {[Cu(Fbtx)1.5(HL3)(H2O)] · H2O}n ( 3 ) [Fbtx = 2,3,5,6‐tetrafluoro‐1,4‐bis(1,2,4‐triazole‐1‐ylmethyl)benenze, H2L1 = terephthalic acid, H3L2 = trimesic acid, NaH2L3 = 5‐sulfoisophthalic acid monosodium salt], were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectra, and single‐crystal and powder X‐ray diffraction techniques. All the complexes have a two‐dimensional (2D) coordination layer structure. Of these, 1 displays a planar 44‐ sql structure whereas both 2 and 3 are highly undulated 63‐ hcb nets. Moreover, their thermal stability and catalytic behaviors in the aerobic oxidation of 4‐methoxybenzyl alcohol were also investigated as well. The results indicate that the benzene dicarboxylate ligands have an effective influence on the structures and catalytic properties of the resulting coordination polymers.  相似文献   

6.
M(HL)(H2O)n complexes have been obtained by the electrochemical reaction of Fe, Co, Ni, Cu, Zn and Cd anodes with the potentially pentadentate and trianionic asymmetrical Schiff base 3‐aza‐N‐{2‐[1‐aza‐2‐(5‐nitro‐2‐hydroxylphenyl)‐vinyl]phenyl}‐4‐(5‐nitro‐2‐hydroxyphenyl)but‐3‐enamide (H3L), containing a hard amido donor atom. The complexes have been characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopies, magnetic measurements and molar conductivities. Co(HL)(H2O) ( 2 ) has been found to rearrange in DMF solution into a crystallographically solved octahedral complex, CoL1(H2O)2 ( 7 ) [where H2L1 is the symmetrical Schiff base ligand N,N′‐(1,2‐phenylene)‐bis(5‐nitro‐3‐hydroxysalicylidenimine)]. A hydrolysis mechanism is discussed to explain this rearrangement.  相似文献   

7.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

8.
Tridentate Schiff bases (H2L1 or H2L2) were derived from condensation of acetylacetone and 2-aminophenol or 2-aminobenzoic acid. Binuclear square pyramidal complexes of the type [M2(L1)2]?·?nH2O (M?=?Fe–Cl, n?=?0; M?=?VO, n?=?1) were accessed from interaction of H2L1 with anhydrous FeCl3 and VOSO4?·?5H2O, respectively. A similar reaction with H2L2, however, produced mononuclear complexes [ML2(H2O) x ]?·?nH2O (M=Fe–Cl, x?=?0, n?=?0; M=VO, x?=?1, n?=?1). The compounds were characterized using elemental analysis, FT-IR, UV-Vis, and NMR (for ligand only), and mass spectroscopies and solution electrical conductivity studies. Magnetic susceptibility measurements suggest antiferromagnetic exchange in binuclear Fe(III) and VO(IV) complexes. Thermo gravimetric analysis (TGA) provided unambiguous evidence for the presence of coordinated as well as lattice water in [VOL2(H2O)]?·?H2O. Cyclic voltammetric studies showed well-defined redox processes corresponding to Fe(III)/Fe(II) and VO(V)/VO(IV). In vitro antimicrobial activities of the compounds were investigated against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeroginosa, Escherichia coli, Bacillus subtilis, and Proteus vulgaris. H2L1 and its binuclear complexes exhibited pronounced activity against all the microorganisms tested.  相似文献   

9.
In the title compound, [CuCl(C6H6N4)(H2O)][Cu(C4H5NO4)Cl]·H2O, the CuII atom in the cation is coordinated by one Cl ion, two N atoms of the 2,2′‐biimidazole ligand and one aqua ligand. Within the anion, the CuII atom is bonded to one Cl ion, and one N and two O atoms of the imino­diacetate ligand. Neighbouring cations and anions are connected to each other by Cu·Cl semi‐coordination bonds of 2.830 (12) and 3.071 (12) Å, forming a Cu2Cl2 rectangular unit. The dinuclear units further link into a polymeric chain along the a axis through Cu·Oaqua interactions of 2.725 (3) Å. Including the long coordination bonds, the geometries around the Cu atoms in the cation and anion are square‐pyramidal and distorted octahedral, respectively.  相似文献   

10.
New zinc (II), copper (II), nickel (II) and cobalt (III) complexes, [Zn (HL)2]I2 (1) , [Cu (HL)Cl2] (2) , [Cu (HL)Br2] (3) , [Cu (HL)(H2O)2](ClO4)2 (4) , [Ni (HL)2]I2·H2O (5) , [Co(L)2]Cl (6) , [Co(L)2]NO3 (7) , [Co(L)2]I·[Co(L)2](I3) (8) were obtained with 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone ( HL ). The isothiosemicarbazone ligand was characterized by NMR (1H and 13C), IR spectroscopy and X-ray diffraction. All the complexes were characterized by elemental analysis, IR, UV–Vis, ESI-MS spectroscopy, molar conductivity, magnetic susceptibility measurements. X-ray diffraction analysis on the monocrystal and powder elucidated the structure of the complexes 1 , 5 , 7 and 8 . The ligand and the complexes were tested for their antioxidant and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Candida albicans. Also, the antiproliferative properties of these compounds on human leukemia HL-60, human cervical epithelial HeLa, human epithelial pancreatic adenocarcinoma BxPC-3, human muscle rhabdomyosarcoma spindle, large multinucleated RD cells and normal MDCK cells have been investigated. The nickel complex 5 and cobalt complexes 6 , 7 showed promising antiproliferative activity and low toxicity.  相似文献   

11.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

12.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

13.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

14.
Novel Schiff base (H2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H2L] complexes are found from the elemental analyses data having the formulae [M(H2L)Cl2yH2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H2L)Cl2]Cl·H2O, [Th(H2L)Cl2]Cl2·3H2O and [UO2(H2L)](CH3COO)2·2H2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO2(II) complexes are electrolytes. IR spectra show that H2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern method. The ligand (H2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.  相似文献   

15.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

16.
A new Schiff base, H2L, was prepared by condensation of 4,6-diacetylresorcinol with o-phenylenediamine in molar ratio 1?:?1. The ligand reacted with copper(II), nickel(II), cobalt(II), iron(III), zinc(II), oxovanadium(IV), and dioxouranium(VI) ions in the absence and presence of LiOH to yield mononuclear and homobinuclear complexes. The mononuclear dioxouranium(VI) complex [(HL)-(UO2)(OAc)(H2O)]·5H2O was used to synthesize heterobinuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H-, and 13C-NMR, electronic, ESR and mass spectra, conductivity, and magnetic susceptibility measurements as well as thermal analysis. In the absence of LiOH, mononuclear complexes (1, 4, and 9) were obtained; in the presence of LiOH, binuclear complexes (3, 5, 7, and 10) as well as mononuclear complexes (2, 6, and 8) were obtained. In the mononuclear complexes, the coordinating sites are the phenolic oxygen, azomethine nitrogen, and amino nitrogen. In addition to these coordinating sites, the free carbonyl and phenolic OH are involved in coordination in binuclear complexes. The metal complexes exhibited octahedral, tetrahedral, and square planar geometries while the uranium is seven-coordinate. The antimicrobial and antioxidant activities of the ligand and its complexes were investigated. The ligand and the metal complexes showed antitumor activity against Ehrlich Acites Carcinoma.  相似文献   

17.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of multifunctional triaminoxime have been synthesized and characterized by elemental analyses, IR, UV–Vis spectra, magnetic moments, 1H- and 13C-NMR spectra for ligand and its Ni(II) complex, mass spectra, molar conductances, thermal analyses (DTA, DTG and TG) and ESR measurements. The IR spectral data show that the ligand is bi-basic or tri-basic tetradentate towards the metals. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid copper(II) complexes [(HL)(Cu)2(Cl)2] · 2H2O (2) and [(L)(Cu)3(OH)3(H2O)6] · 7H2O (6) show axial symmetry of a d x²???y 2 ground state; however, [(HL)(Co)] (4) shows an axial type with d Z 2 ground state and manganese(II) complex [(L)(Mn)3(OH)3(H2O)6] · 4H2O (10) shows an isotropic type. The biological activity of the ligand and its metal complexes are discussed.  相似文献   

18.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

19.
《中国化学会会志》2018,65(9):1060-1074
Four divalent metal(II) complexes, namely [Co(II)L(H2O)Cl]·2H2O, [Ni(II)L(H2O)Cl]·4H2O, [Cu(II)L(H2O)Cl]·3H2O, and [Zn(II)L(H2O)Cl]·5H2O, {L = 2‐furan‐2‐ylmethyleneamino‐phenyl‐iminomethylphenol}, were synthesized and characterized by several techniques. The molar conductance measurement of all analyzed complexes in DMSO showed their non‐electrolytic nature. The new Schiff base ligand (HL) acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen, furan ring oxygen, and two azomethine nitrogen atoms. The ligand field parameters were measured for the metal complexes, which were found to be in the range notified for an octahedral structure. The molecular structural parameters of the synthesized HL ligand and its related metal(II) complexes were calculated and correlated with the experimental parameters such as infrared (IR) data. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data confirmed the examined compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated against colon carcinoma (HCT‐116) and mouse myelogenous leukemia carcinoma (M‐NFS‐60) cell lines. The inhibition effect of HL ligand and its isolated complexes on the corrosion carbon in the form of a rod of area 0.35 cm2 in HCl was investigated by measuring the weight loss at 25 °C.  相似文献   

20.
Four transition metal(II) complexes with podophyllic acid hydrazide (HL) were prepared and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, and 1H NMR. The complexes have the general formula ML2 · nH2O, where M = Zn, Cu, Co, and Ni, n = 2 or 0. Anti-tumor activities of podophyllotoxin, HL, ZnL2 · 2H2O, and NiL2 were tested by both the MTT and the SRB method. The results show that the activities of the complexes against the tumor cells tested are superior to HL and the anti-tumor activity of NiL2 is even similar to that of podophyllotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号