首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 e V。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 e V,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 e V,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 e V)与实验观察到的Fe 2p的CLS值(-0.5 e V)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 e V)与实验观察到的Fe 2p的CLS值(-0.8 e V)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

2.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 eV。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 eV,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 eV,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 eV)与实验观察到的Fe 2p的CLS值(-0.5 eV)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 eV)与实验观察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

3.
考察了几种特色南药中重金属(Cd,Cr,Cu,Fe,Mn,Ni,Pb,Sr,Zn)的含量状况,并采用形态连续萃取法分析重金属在药材中的形态分布,研究了药材煎煮时药材中重金属的释放及煎煮过程对药材中重金属形态分布的影响。结果表明,几种南药中Cr,Pb,Zn的含量较高,且巴戟天中的重金属总量高于限量标准;原药材中Cr,Cu,Mn,Ni,Pb和Zn主要存在于有机态和残留态,Fe和Sr主要存在于残留态。煎煮使南药中大量重金属迁移到药汤中;药汤中Cu,Mn,Cr,Pb和Zn主要来自于其在药材中的可交换态、碳酸盐结合态和有机态,而药汤中Sr,Ni和Fe不仅包含其非残留态,更多来自于它们的残留态。为减少药汤中重金属,对于Cu,Mn,Cr,Pb和Zn既要控制在药材中的总量,且需降低它们在药材中的非残留态含量;对于Fe,Ni和Sr则主要是控制其在药材中的总量。  相似文献   

4.
以三维刚性结构的三蝶烯为单体, 通过简单的Friedel-Crafts烷基化反应制备得到高比表面积的三蝶烯基多孔有机聚合物(TPOP), 在TPOP中接枝乙二胺和氯乙酸钠, 构建了广谱重金属离子吸附剂(TPOP-CH2EDTA). 获得的TPOP-CH2EDTA具有微孔/介孔结构, 其微孔尺寸为1.6 nm, BET比表面积为634 m2/g, 利于重金属离子传递和配位作用的强化. TPOP-CH2EDTA对重金属离子具有吸附广谱性, 其对Ag(Ⅰ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Sn(Ⅳ), Pb(Ⅱ), Cd(Ⅱ), Fe(Ⅲ)和Cr(Ⅲ)等10种重金属离子的去除率均高于98%. 以Pb(Ⅱ)为典型的重金属污染物, 通过Langmuir模型计算得到Pb(Ⅱ)的最大吸附容量高达184.5 mg/g; 具有拟二级吸附动力学特征, 吸附速率快, 动力学常数k2为0.0173 g·mg?1·min?1; 经过5次循环使用后, Pb(Ⅱ)的去除效率仍高达95.8%. TPOP-CH2EDTA对混合溶液中Pb(Ⅱ)和Cu(Ⅱ)的去除率均高于99%, 且对含有大量无机盐[如Ca(Ⅱ), Mg(Ⅱ), K(Ⅰ)和Na(Ⅰ)离子]和有机化合物的复杂真实水体系, Pb(Ⅱ)和Cu(Ⅱ)的去除效率仍高于90%. 因此, 通过调控多孔有机聚合物微观结构(如比表面积、 孔径和吸附位点密度)而构筑的广谱性重金属吸附材料, 为协同去除复杂水系统中混合重金属离子提供了方案.  相似文献   

5.
通过采用水与醇的混合体系作溶剂,单分散的磁铁矿Fe3O4和赤铁矿α-Fe2O3纳米晶被成功获得,纳米晶的形貌和尺寸均能通过简单的方式得以调控.产物的结构通过X射线衍射和电镜进行表征分析,样品的磁性和催化性能也被研究和比较.水与醇的混合体系为氧化铁的制备和控制生长提供了一种非常好的液相介质.由于α-Fe2O3的001面为极性面,因而可以通过醇的极性大小来控制晶体的001面的生长,获得厚度可调的片状赤铁矿纳米晶,而醇的极性与醇的碳链长短相关.对于磁铁矿Fe3O4,其晶体这种特殊结构的存在,醇对晶体各个方向的影响基本一致,因而在生长过程中晶粒形貌没有发生变化,但两种醇对Fe3O4吸附能力不同,从而导致了两种溶剂中获得的样品的颗粒尺寸的不同.对两种氧化铁的磁性研究发现,300K下,两种晶型的纳米晶均具有尺寸或形貌决定的磁性能.对于Fe3O4,当晶粒尺寸为35nm时,饱和磁化强度(Ms),剩余磁化强度(Mr)及矫顽力(Hc)分别为74.2emu/g,9.4emu/gand107Oe.而当晶粒尺寸减小到25nm时,Ms,Mr和Hc的值分别变为72.8emu/g,10.4emu/g和117Oe.饱和磁化强度随晶粒尺寸的较小...  相似文献   

6.
采用火焰原子吸收光谱法测定烟叶中Mn,Cu,Zn元素,石墨炉原子吸收光谱法测定Cd,Cr,Pb元素,以HNO3-H2O2微波消解法获取烟叶中的重金属总量,以超声水提取法获取水溶态重金属进行初级形态分析,以Tessier逐级提取法获取5种形态的重金属进行次级形态分析。实验结果表明,原子吸收光谱法检测6种重金属线性良好,相关系数(r2)不低于0.998 8,检出限为0.16~3.1μg·L-1。烟叶样品中Mn,Cu,Zn,Cd元素主要以可交换态和碳酸盐结合态的形式存在;Cr主要以残渣态的形式存在;而Pb主要以碳酸盐结合态和残渣态的形式存在。  相似文献   

7.
刘爽  李勇  申文杰 《催化学报》2015,(9):1409-1418
尺寸在1–10 nm的金属纳米催化剂广泛地应用于石油化工,精细化学品合成,能源与环境保护等领域。大量研究表明,金属纳米粒子的催化性能与其微观结构,即尺寸、形貌和晶相等密切相关。近年来,对金属纳米粒子的尺寸和形貌效应已经有了较为系统深入的研究,但对晶相效应的研究则较少涉及。这主要是由于介稳晶相的金属纳米粒子在合成过程中或反应条件下极易转化为热力学稳定的晶相结构。根据金属原子密堆积形式,金属纳米粒子的晶相结构主要有立方面心(fcc)、立方体心(bcc)和六方密堆积(hcp)三种晶相;而金属合金由于d带电子存在着多种杂化方式,因而其晶相结构呈现出多样性且与单一金属有很大的不同。金属和合金纳米粒子晶相结构的调控,不仅会改变金属原子的配位环境,调控了其电子分布状态,还可影响反应物和产物的吸附、活化和脱附,进而调变催化性能。首先,我们简要总结了液相合成和固相转变调控金属纳米粒子晶相的原理和方法。纳米粒子的液相合成一般包括前驱体还原成核和晶核生长两个阶段,通过对液相合成条件的优化,尤其是表面活性剂的选择,可有效调控合成过程中的热力学和动力学因素,从而实现金属晶相的可控合成。固相转变则主要是对具有一定晶相结构的纳米粒子于一定气氛和温度条件下进行加热处理,利用金属粒子与活性气体之间(H2, CO等)的化学作用来实现晶相转变。利用上述方法,可以合成出fcc-Co、fcc-Ru、L10-AuCu等热力学介稳的金属或合金纳米粒子。在此基础之上,我们分别以Co纳米粒子(fcc和hcp晶相)催化FT合成, Fe模型催化剂(fcc和bcc晶相)活化N2和CO, Ru纳米粒子(fcc和hcp晶相)催化CO氧化和氨硼烷水解制氢, Pd纳米粒子(PdHx物种)催化加氢等为例分析了晶相对金属纳米粒子催化性能的影响;在合金催化剂方面,以Pt3Co(无序的fcc和有序的L12), AuPdCo(P3–m、Fm3–m和R3–m混合晶相)和FePt纳米粒子(fcc和fct相)催化O2电化学还原、PtRhSn (碲铂矿晶相和fcc晶相)和ZrPt3纳米粒子(hcp和fcc晶相)催化乙醇电氧化、Ag3In合金(无序的Fm3–m相和有序的Pm3–m晶相)催化对硝基苯酚加氢、PdRu纳米粒子(fcc和hcp混合晶相)催化CO氧化等为例分析了合金催化剂的晶相对催化性能的影响。上述研究进展表明,金属纳米粒子的晶相也是影响制备剂高效金属催化剂的主要因素。最后,我们结合纳米催化的发展现状,提出了金属纳米粒子的晶相调控在纳米催化和纳米材料领域可能的发展态势。第一,通过对金属纳米粒子溶液相合成机理的深入研究,有助于发展出尺寸、形貌和晶相同时可控的新合成方法。第二,金属纳米粒子在晶相转化过程中往往伴随着烧结及组分的偏析等难题。利用氧化物包覆的核壳型或蛋壳型纳米结构以及碳纳米管的空间限域效应,或许有助于解决上述难题。第三,具有亚稳晶相结构的金属纳米粒子在反应条件下极易转变为热力学稳定的结构,因此,利用原位、动态、实时的表征技术对催化剂在真实工作状态下的微观结构进行细致的分析是阐明晶相效应的前提。  相似文献   

8.
低温下 Fe(Ⅱ)对Ferrihydrite相转化的催化作用研究   总被引:3,自引:0,他引:3  
刘辉  魏雨  孙予罕 《化学学报》2005,63(5):391-395
研究了在低温、近中性条件下,在微量Fe(Ⅱ)离子存在下Ferrihydrite(又称为水合氧化铁hydrous iron oxide)的相转化过程.结果表明,微量Fe(Ⅱ)离子的存在不仅可以加速Ferrihydrite的相转化过程,而且其相转化产物的组成也与没有Fe(Ⅱ)离子存在时产物的组成有所不同,即除了α—FeOOH和α—Fe2O3外,还形成了γ-FeOOH;相转化过程既与阴离子的种类、反应温度、反应时间等因素有关,也与Fe(Ⅱ)离子存在状态有关;Fe(Ⅱ)离子通过催化Ferrihydrite的溶解过程,从而加速整个相转化过程.对该过程的深入研究将对认识和了解自然条件下铁氧化物的形成与相互转化具有重要意义.  相似文献   

9.
尺寸在1–10 nm的金属纳米催化剂广泛地应用于石油化工,精细化学品合成,能源与环境保护等领域.大量研究表明,金属纳米粒子的催化性能与其微观结构,即尺寸、形貌和晶相等密切相关.近年来,对金属纳米粒子的尺寸和形貌效应已经有了较为系统深入的研究,但对晶相效应的研究则较少涉及.这主要是由于介稳晶相的金属纳米粒子在合成过程中或反应条件下极易转化为热力学稳定的晶相结构.根据金属原子密堆积形式,金属纳米粒子的晶相结构主要有立方面心(fcc)、立方体心(bcc)和六方密堆积(hcp)三种晶相;而金属合金由于d带电子存在着多种杂化方式,因而其晶相结构呈现出多样性且与单一金属有很大的不同.金属和合金纳米粒子晶相结构的调控,不仅会改变金属原子的配位环境,调控了其电子分布状态,还可影响反应物和产物的吸附、活化和脱附,进而调变催化性能.首先,我们简要总结了液相合成和固相转变调控金属纳米粒子晶相的原理和方法.纳米粒子的液相合成一般包括前驱体还原成核和晶核生长两个阶段,通过对液相合成条件的优化,尤其是表面活性剂的选择,可有效调控合成过程中的热力学和动力学因素,从而实现金属晶相的可控合成.固相转变则主要是对具有一定晶相结构的纳米粒子于一定气氛和温度条件下进行加热处理,利用金属粒子与活性气体之间(H2,CO等)的化学作用来实现晶相转变.利用上述方法,可以合成出fcc-Co、fcc-Ru、L10-Au Cu等热力学介稳的金属或合金纳米粒子.在此基础之上,我们分别以Co纳米粒子(fcc和hcp晶相)催化FT合成,Fe模型催化剂(fcc和bcc晶相)活化N2和CO,Ru纳米粒子(fcc和hcp晶相)催化CO氧化和氨硼烷水解制氢,Pd纳米粒子(Pd Hx物种)催化加氢等为例分析了晶相对金属纳米粒子催化性能的影响;在合金催化剂方面,以Pt3Co(无序的fcc和有序的L12),Au Pd Co(P3–m、Fm3–m和R3–m混合晶相)和Fe Pt纳米粒子(fcc和fct相)催化O2电化学还原、Pt Rh Sn(碲铂矿晶相和fcc晶相)和Zr Pt3纳米粒子(hcp和fcc晶相)催化乙醇电氧化、Ag3In合金(无序的Fm3–m相和有序的Pm3–m晶相)催化对硝基苯酚加氢、Pd Ru纳米粒子(fcc和hcp混合晶相)催化CO氧化等为例分析了合金催化剂的晶相对催化性能的影响.上述研究进展表明,金属纳米粒子的晶相也是影响制备剂高效金属催化剂的主要因素.最后,我们结合纳米催化的发展现状,提出了金属纳米粒子的晶相调控在纳米催化和纳米材料领域可能的发展态势.第一,通过对金属纳米粒子溶液相合成机理的深入研究,有助于发展出尺寸、形貌和晶相同时可控的新合成方法.第二,金属纳米粒子在晶相转化过程中往往伴随着烧结及组分的偏析等难题.利用氧化物包覆的核壳型或蛋壳型纳米结构以及碳纳米管的空间限域效应,或许有助于解决上述难题.第三,具有亚稳晶相结构的金属纳米粒子在反应条件下极易转变为热力学稳定的结构,因此,利用原位、动态、实时的表征技术对催化剂在真实工作状态下的微观结构进行细致的分析是阐明晶相效应的前提.  相似文献   

10.
以自制的Fe3O4磁性纳米材料为核,多巴胺(DA)为表面修饰剂,成功地将2.0 G聚酰胺-胺(PAMAM)树状大分子接枝在Fe3O4磁核表面,制备出了一系列不同DA含量的Fe3O4@PDA@PAMAM磁性纳米吸附材料。采用X射线衍射仪(XRD)、红外光谱仪(IR)、振动样品磁强计(VSM)、透射电子显微镜(TEM)和电感耦合等离子体发射光谱仪(ICP-OES)等分析测试手段对材料组成、微观结构、磁性能和对重金属Cd(Ⅱ)离子的吸附性能进行了测试和表征。研究了修饰剂DA用量对Fe3O4@PDA@PAMAM磁性纳米吸附材料的相组成、微观结构、磁性能和吸附性能的影响。实验结果表明,Fe3O4@PDA@PAMAM磁性纳米吸附材料均呈典型的核-壳结构,材料晶型均呈现尖晶石结构,且壳层厚度随DA用量增加而增厚;材料的饱和磁化强度(Ms)均比Fe3O4的小,且随着DA用量的增加而降低,并且材料的矫顽力(Hc)和剩余磁化强度(Mr)均较低,其磁响应特性适合于做为可回收磁性纳米吸附材料。材料对Cd(Ⅱ)离子的平衡吸附容量随着DA用量的增加呈先增加后减小趋势。当Fe3O4和DA的质量比为8∶4时,吸附剂对Cd(Ⅱ)离子的吸附容量达到最大值165.13 mg·g^-1。  相似文献   

11.
正铁的氧化物和氢氧化物是自然界中最丰富的过渡金属氧化物,并在污染物运输、地表水和地下水的pH值控制及微生物活动等相关的现象中发挥重要作用1,2。自然界中铁氧化物和氢氧化物主要有赤铁矿(α-Fe_2O_3)、磁铁矿(Fe_3O_4)、针铁矿(α-FeOOH)和水铁矿(Fe_5HO_8·4H_2O)等,其中磁铁矿是铁矿石资源中分布最广的铁氧化合物,在磁性材料、催化和医学领域(磁共振成像,MRI)中有着广泛的应用3,4。磁铁矿结构中含有ε-Keggin-Fe_(13)分子  相似文献   

12.
使用DRIFTS, XPS, HPLC和IC考察了常温、常压和氧气存在下SO2与Fe2O3的复相反应, 结果表明, SO2在Fe2O3表面的反应活性与Fe2O3表面含水量密切相关, 表面含水量增加有助于Fe(Ⅱ)(aq)和硫酸盐的生成.室温下(T=291 K, 相对湿度68%), 每毫克Fe2O3在30 min内可消耗53.6 μg SO2, 生成12.6 ng Fe(Ⅱ)(aq)和56.2 μg SO2-4.反应产物 SO2-4的浓度比Fe(Ⅱ)(aq)的浓度高3个数量级, 表明在生成硫酸盐的复相反应中铁对SO2氧化具有非常高的催化活性.提出了Fe(Ⅱ)(aq) 和硫酸盐的生成机理.  相似文献   

13.
使用DR IFTS,XPS,HPLC和IC考察了常温、常压和氧气存在下SO2与Fe2O3的复相反应,结果表明,SO2在Fe2O3表面的反应活性与Fe2O3表面含水量密切相关,表面含水量增加有助于Fe(Ⅱ)(aq)和硫酸盐的生成.室温下(T=291 K,相对湿度68%),每毫克Fe2O3在30 m in内可消耗53.6μg SO2,生成12.6 ngFe(Ⅱ)(aq)和56.2μg SO42-.反应产物SO42-的浓度比Fe(Ⅱ)(aq)的浓度高3个数量级,表明在生成硫酸盐的复相反应中铁对SO2氧化具有非常高的催化活性.提出了Fe(Ⅱ)(aq)和硫酸盐的生成机理.  相似文献   

14.
采用铜模吸铸制备了厚度为0.8 mm,成分为Nd9Fe81-x-yTi4C2BxNby(x=11,13,15;y=0,4)的Nd2Fe14B/Fe3B型纳米复合永磁合金块体样品,研究了添加Nb对合金铸态组织及其晶化行为的影响,并测试了其磁性能。结果表明:在合金中添加4%(原子分数)Nb元素,不仅能抑制吸铸样品表面Nd2Fe23B3软磁性相、Nd1.1Fe4B4非磁性相和未知相的形成,导致Nd2Fe14B,Fe3B和α-Fe相的相对量增加,而且促使样品内部在非晶基体上形成了少量的Nd2Fe14B和α-Fe,Fe3B纳米晶。添加了Nb的合金吸铸样品表现出一定的硬磁性,其中Nd9Fe66Ti4C2B15Nb4吸铸样品具有最高的矫顽力(Hci=116.66 k A·m-1);添加4%(原子分数)Nb使得合金在晶化过程中由原来的异相同温一步晶化转变为两步晶化,且初始晶化温度Tx均明显降低,两个放热峰的ΔTpx均增大。  相似文献   

15.
以分级提取-电感耦合等离子体质谱考察了黄铁矿中重金属的相态分布。结果表明,黄铁矿中的重金属以Pb为主,总量达830mg/kg,并且酸可交换态Pb主要存在于碳酸盐相中或直接以PbS形式存在,这部分Pb达56.9%;易还原态Pb主要存在于铁氧化物相中,为29.7%;可氧化态和残余态Pb存在于硫化物相和硅酸盐相中,分别为3.5%和9.9%。黄铁矿在自然条件下以Pb释放为主,Cr和Cd的释放也不容忽视。漫反射红外光谱表征发现,黄铁矿在表面氧化过程中,其表面羟基增强,表明存在表面溶解及表面酸化现象。进一步的机理探讨认为,重金属在黄铁矿表面存在一种“溶解-吸附”平衡,这一平衡由黄铁矿表面氧化和碳酸盐中和作用共同控制,并决定重金属的释放及迁移。  相似文献   

16.
循环伏安法结合原位拉曼光谱的表征结果表明,烟酸在铁钝化膜层表面的吸附行为归因于其具有形成稳定膜层复合物的性能,烟酸将间隙离子FeⅡ转化为稳定的晶格离子FeⅢ,从而降低铁钝化膜的溶解性.旋转电极电化学晶体微天平的分析结果表明烟酸在活化态和钝化态铁表面的吸附行为遵循LangmuirFreundlich热力学规律,并由此计算出过程中的吸附常数、标准自由能和非均质分布常数.研究认为有机分子在钝化膜表面为化学型吸附,可导致钝化膜破坏的间隙离子被烟酸固定在八面体空位晶格中形成稳定晶型结构,并通过扫描电镜(SEM)和衰减全反射红外光谱(ATR FTIR)分析对结论进行了再次验证.  相似文献   

17.
本文用CNDO/2方法计算了一组铁的双氧配合物的电子结构。结果表明,处于赤道配体大环超共轭结构中,紧邻中心Fe离子的N原子、其介于C元素和O元素之间的电负性,维持了低价态Fe(Ⅱ)的稳定性,调整了Fe(Ⅱ)的d能级,从而利于Fe(Ⅱ)(d_(xz)和d(yz))→O_2(π_A)的电子迁移,阻止O_2(π_B)→Fe(Ⅱ)(d_(z2))的电子迁移。由此解释了金属酞菁化合物,催化烃类氧化活性与含氮配体间关联的实验结果。  相似文献   

18.
通过"人工光合成"过程,将太阳能转化成氢能的形式加以存储和利用,是替代传统化石能源的清洁能源的制备有效途径.其中,光电化学分解水是氢能制备的最有潜力的路径之一.n型BiVO4由于具有丰富的储量、较窄的带隙以及合适的能带位置,被称为光电化学领域的研究热点.然而,未修饰的BiVO4光阳极性能并不理想,主要原因在于载流子复合严重、导电性差以及表面催化动力学低等性质的制约.科研工作者们针对这些方面已进行了非常多的研究,例如与电子传输层的复合、产氧电催化剂的担载以及异质结的构建等.其中表面动力学和电荷分离的同时提升是更理想的改善BiVO4光阳极性能的方法.我们在上述研究基础上,采用光化学沉积法在纳米多孔BiVO4电极表面担载无定形氧化铁层,将电极在1.23 V vs.RHE电位下的光电流提升至2.52 mA/cm2,是初始光电化学性能的3倍.采用间歇光照计时电流(i-t)测试,电化学交流阻抗谱(EIS),X射线光电子能谱(XPS),原位和非原位的X射线精细结构能谱(in-situ and ex-situ XAFS)等表征手段研究了无定形氧化铁层的成分和光电化学反应过程中的价态变化,从而分析出光电化学性能提升的原因.间歇光照i-t测试和EIS测试结果表明,无定形氧化铁沉积在BiVO4使电荷累积减少,复合率降低.XPS测试结果发现无定形氧化铁层存在少量的二价铁成分.通过原位XAFS测试发现,BiVO4/FeOx电极中Fe原子的价态在光照和施加外加偏压条件下会有价态的升高,而撤去光照和偏压后Fe原子的价态状态与最初非原位的测试结果重合.这样的结果证明了无定型氧化铁层在光电化学反应过程中由于二价铁成分的存在,能够很好的通过价态改变实现空穴的吸附和传输,即吸附空穴,被空穴氧化成三价或四价,同时结合自身电催化活性,促进表面分解水反应的进行.而水的氧化反应结束时,则伴随着二价铁离子的再生成.这种反应机理为开发更高效的电催化剂,匹配光电极使用,有着重大的指导意义.  相似文献   

19.
通过"人工光合成"过程,将太阳能转化成氢能的形式加以存储和利用,是替代传统化石能源的清洁能源的制备有效途径.其中,光电化学分解水是氢能制备的最有潜力的路径之一.n型BiVO_4由于具有丰富的储量、较窄的带隙以及合适的能带位置,被称为光电化学领域的研究热点.然而,未修饰的BiVO_4光阳极性能并不理想,主要原因在于载流子复合严重、导电性差以及表面催化动力学低等性质的制约.科研工作者们针对这些方面已进行了非常多的研究,例如与电子传输层的复合、产氧电催化剂的担载以及异质结的构建等.其中表面动力学和电荷分离的同时提升是更理想的改善BiVO_4光阳极性能的方法.我们在上述研究基础上,采用光化学沉积法在纳米多孔BiVO_4电极表面担载无定形氧化铁层,将电极在1.23 V vs.RHE电位下的光电流提升至2.52 m A/cm2,是初始光电化学性能的3倍.采用间歇光照计时电流(i-t)测试,电化学交流阻抗谱(EIS),X射线光电子能谱(XPS),原位和非原位的X射线精细结构能谱(in-situ and ex-situ XAFS)等表征手段研究了无定形氧化铁层的成分和光电化学反应过程中的价态变化,从而分析出光电化学性能提升的原因.间歇光照i-t测试和EIS测试结果表明,无定形氧化铁沉积在BiVO_4使电荷累积减少,复合率降低.XPS测试结果发现无定形氧化铁层存在少量的二价铁成分.通过原位XAFS测试发现,BiVO_4/Fe Ox电极中Fe原子的价态在光照和施加外加偏压条件下会有价态的升高,而撤去光照和偏压后Fe原子的价态状态与最初非原位的测试结果重合.这样的结果证明了无定型氧化铁层在光电化学反应过程中由于二价铁成分的存在,能够很好的通过价态改变实现空穴的吸附和传输,即吸附空穴,被空穴氧化成三价或四价,同时结合自身电催化活性,促进表面分解水反应的进行.而水的氧化反应结束时,则伴随着二价铁离子的再生成.这种反应机理为开发更高效的电催化剂,匹配光电极使用,有着重大的指导意义.  相似文献   

20.
采用共沉淀法在多种条件下分别制备氧化铁及其负载金催化剂,测定其水煤气变换反应活性.通过BET-PS,XRD,H2-TPR和CO-TPD等表征手段,研究负载纳米金对氧化铁载体结构、结晶行为、还原性能以及CO吸脱附性质的影响,探讨氧化铁负载金催化剂的活性相.结果表明:(1)负载纳米金能抑制氧化铁载体在焙烧时的结晶过程,提高其还原性能以及增加表面CO吸附中心.但这种抑制作用与催化剂的制备条件(如沉淀剂种类、沉淀方式和焙烧温度等)密切相关.(2)氧化铁负载金催化剂的低温高活性(<300℃)可能是纳米金粒子与Fe3O4相协同作用的结果,在高温区(>300℃)仍是Fe3O4相起主要催化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号