首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We report on the controlled‐radical polymerization of the photocleavable o‐nitrobenzyl methacrylate (NBMA) and o‐nitrobenzyl acrylate (NBA) monomers. Atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer polymerization (RAFT), and nitroxide‐mediated polymerization (NMP) have been evaluated. For all methods used, the acrylate‐type monomer does not polymerize, or polymerizes very slowly in a noncontrolled manner. The methacrylate‐type monomer can be polymerized by RAFT with some degree of control (PDI ∼ 1.5) but leading to molar masses up to 11,000 g/mol only. ATRP proved to be the best method since a controlled‐polymerization was achieved when conversions are limited to 30%. In this case, polymers with molar masses up to 17,000 g/mol and polydispersity index as low as 1.13 have been obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6504–6513, 2009  相似文献   

2.
Poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) homopolymers with low polydispersities were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization. The performances of two chain transfer agents, 2‐cyanoprop‐2‐yl dithiobenzoate and 4‐cyanopentanic acid dithiobenzoate (CPADB), were compared. It was found that the polymerization of 2‐(diethylamino) ethyl methylacrylate was under good control in the presence of CPADB with 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as initiator in 1,4‐dioxane at 70 °C. The kinetic behaviors were investigated under different CPADB/ACPA molar ratios. A long polymerization inhibition period was observed at high [CPADB]/[ACPA] ratio. The influences of [CPADB]/[ACPA] ratio, monomer/[CPADB] ratio, and temperature were studied with respect to monomer conversion, molecular weight control, and polydispersity index (PDI). The PDI decreased from 1.21 to 1.12, as the CPADB/ACPA molar ratio changed from 2 to 10. The molecular weight of PDEAEMA could be controlled by monomer/CPADB molar ratio. The control over MW and PDI was improved as the temperature increased from 60 to 70 °C; however, an additional increase to 80 °C led to a loss of control. Using PDEAEMA macroRAFT agent, pH/thermo double‐responsive block copolymers of PDEAEMA and poly(N‐isopropylacrylamide) (PDEAEMA‐b‐PNIPAM) with narrow polydispersity (PDI, 1.24) were synthesized. The lower critical solution temperature of PDEAEMA‐b‐PNIPAM block copolymer depended on the environmental pH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3294–3305, 2008  相似文献   

3.
A photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of p‐methylstyrene (p‐MS) and styrene (St) with 2‐(dodecylthiocarbonothioylthio)‐2‐methylpropionic acid as the chain transfer agent (CTA) and aromatic aldehydes, including 4‐cyanobenzaldehyde (PC1), 2,4‐dimethoxy benzaldehyde, and 4‐methoxy benzaldehyde, as organic photocatalysts has been demonstrated via irradiation with 23 W compact fluorescent lamps. The kinetics of the polymerizations shows first order with respect to monomer conversions. Linear evolution of the Mn of the produced polymers with the monomer conversion is observed. Meanwhile, the as‐prepared polymers are of relatively narrow polydispersity (PDI = Mw/Mn). For instance, the polymerization of p‐MS shows living polymerization features using PC1 within a range of solvents. Especially, the Mn of PpMS increased from about 2100 to 12,700 g/mol with the monomer conversion from 8% to 52% in tetrahydrofuran. The controlled polymerization of St is also observed under optimal reaction conditions. However, the Mn discrepancy between the experimental readings and theoretical calculations is greater at the monomer conversions greater than 40% and the PDI increased gradually over the monomer conversion. This is probably because that CTA is strongly sensitive to the light irradiation with wave range around its characteristic absorption wavelength, leading to significant decomposition of CTA moieties during the RAFT polymerization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2072–2079  相似文献   

4.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

5.
A series of dodecyl‐based monofunctional trithiocarbonate chain transfer agents (CTAs) were successfully synthesized, toward the reversible addition‐fragmentations chain transfer (RAFT) polymerization of styrene. The CTAs were used as initiators for RAFT polymerization, in the absence of the conventional free radical initiator, at higher temperature. Polystyrene (PS) of narrow polydispersity index (PDI) is synthesized. Subsequently, poly(styrene‐b‐benzyl methacrylate) diblock and poly(styrene‐b‐benzyl methacrylate‐b‐2‐vinyl pyridine) triblock copolymers were synthesized from the PS macro‐RAFT agent by simply heating with the second and third monomer, respectively. These experiments suggest that it should be possible to control the RAFT polymerization initiated by a CTA through the adjustment of the temperature of polymerization in such manner that initiation is tailored to proceed at faster rate (at higher temperature) in comparison to propagation (lower temperature). For the specific CTAs studied in this work, the polymerization rate of styrene was high in the case of the reinitiating cyano (CN)‐substituted group (R group) compared to the other groups studied. The results further show that 4‐cyano pentanoic acid group is superior to the other R groups used for the RAFT polymerization of styrene, especially based on the polydispersity at a given conversion as well as the variation in the expected and experimental number‐average‐molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
The homopolymerization of N‐vinylcarbazole was performed with atom transfer radical polymerization (ATRP) with Cu(I)/Cu(II)/2,2′‐bipyridine (bpy) as the catalyst system at 90 °C in toluene. N‐2‐Bromoethyl carbazole was used as the initiator, and the optimized ratio of Cu(I) to Cu(II) was found to be 1/0.3. The resulting homopolymer, poly(N‐vinylcarbazole) (PVK), was formed after a monomer conversion of 76% in 20 h. The molecular weight as well as the polydispersity index (PDI) showed a linear relation with the conversion, which showed control over the polymerization. A semilogarithmic plot of the monomer conversion with time was linear, indicating the presence of constant active species throughout the polymerization. The initiator efficiency and the effect of the variation of the initiator concentration on the polymerization were studied. The effects of the addition of CuBr2, the variation of the catalyst concentration with respect to the initiator, and CuX (X = Br or Cl) on the kinetics of homopolymerization were determined. With Cu(0)/CuBr2/bpy as the catalyst, faster polymerization was observed. For a chain‐extension experiments, PVK (number‐average molecular weight = 1900; PDI = 1.24) was used as a macroinitiator for the ATRP of methyl methacrylate, and this resulted in the formation of a block copolymer that gave a monomodal curve in gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1745–1757, 2006  相似文献   

7.
Controlled radical polymerization of N‐vinylcaprolactam (NVCL) via reversible addition‐fragmentation chain transfer (RAFT) polymerization or macromolecular design via the interchange of xanthate (MADIX) was described, employing 2‐diphenylthiocarbamoylsulfanyl‐2‐methyl‐propionic acid (CTA1), ((O‐ethylxanthyl)methyl)benzene (CTA2) and (1‐(O‐ethylxanthyl)ethyl)benzene (CTA3) as chain transfer agents (CTA). It was found that all the CTAs led to controlled radical polymerization of NVCL, with the molecular weight increased along with the conversion of monomer and a relatively narrow molecular weight distribution could be obtained, as determined with matrix‐assisted laser desorption and ionization time‐of‐flight (MALDI‐TOF) and gel permeation chromatography (GPC), the polydispersity indices, as determined by MALDI‐TOF, were typically on the order of 1.24, but the polymerization did not proceed in a strictly living manner. The chain transfer ability of these CTAs was in the following order: CTA1 ≈ CTA2 < CTA3. MALTI‐TOF measurement showed that the major population of polymer retained the chain‐end functional group, but minor population deactivated by radical coupling. In preparation of the block copolymer of NVCL and vinyl acetate (VAc) by sequential polymerization, the sequence of monomer addition was important. Using VAc as the first monomer could lead to a block copolymer presenting a unimodal GPC trace and a narrow PDI index, and if NVCL was used as the first monomer, the polymerization was less well controlled. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3756–3765, 2008  相似文献   

8.
We report the direct homopolymerization and block copolymerization of 2‐aminoethyl methacrylate (AEMA) via aqueous reversible addition‐fragmentation chain transfer (RAFT) polymerization. The controlled “living” polymerization of AEMA was carried out directly in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate (CTP) as the chain transfer agent (CTA), and 2,2′‐azobis(2‐imidazolinylpropane) dihydrochloride (VA‐044) as the initiator at 50 °C. The controlled “living” character of the polymerization was verified with pseudo‐first order kinetic plots, a linear increase of the molecular weight with conversion, and low polydispersities (PDIs) (<1.2). In addition, well‐defined copolymers of poly(AEMA‐b‐HPMA) have been prepared through chain extension of poly(AEMA) macroCTA with N‐(2‐hydroxypropyl)methacrylamide (HPMA) in water. It is shown that the macroCTA can be extended in a controlled fashion resulting in near monodisperse block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5405–5415, 2009  相似文献   

9.
Controlled radical polymerization of cyclohexyl methacrylate (CHMA), at ambient temperature, using various chain transfer agents (CTAs) is successfully demonstrated via single electron transfer‐radical addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved. The polymerization rate followed first‐order kinetics with respect to monomer conversion, and the molecular weight of the polymer increased linearly up to high conversion. A novel, fluorescein‐based initiator, a novel fluorescent CTA and two other CTAs comprising of butane thiol trithiocarbonate with cyano (CTA 1) and carboxylic acid (CTA 3) as the end group were synthesized and characterized. The polymerization is observed to be uncontrolled under SET and less controlled under atom transfer radical polymerization (ATRP) condition. CTA 2 and 3 produces better control in propagation compared with CTA 1, which may be attributed to the presence of R group that undergoes ready fragmentation to radicals, at ambient temperature. The poly(cyclohexyl methacrylate) [P(CHMA)] prepared through ATRP have higher fluorescence intensity compared with those from SET‐RAFT, which may be attributed to the quenching of fluorescence by the trithiocarbonate and the long hydrocarbon chain. It is observed that block copolymers P(CHMA‐bt‐BMA) produced from P(CHMA) macroinitiators synthesized via SET‐RAFT result in lower polydispersity index in comparison with those synthesized via ATRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

11.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

12.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

13.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

14.
An N‐alkoxyamine macroinitiator bearing a polymeric nitroxide cap was synthesized and used to investigate the effect of nitroxide size on the rate of nitroxide‐mediated radical polymerization (NMRP). This macroinitiator was prepared from asymmetric double‐headed initiator 9 , which contains both an α‐bromoester and an N‐alkoxyamine functionality. Poly(methyl methacrylate) was grown by atom transfer radical polymerization from the α‐bromoester end of this initiator, resulting in a macroinitiator (Mn = 31,000; PDI = 1.34) bearing a nitroxide cap permanently attached to a polymer chain. The polymerization kinetics of this macroinitiator in NMRP were compared with known N‐alkoxyamine initiator 1 . It was found that the rate of polymerization was unaffected by the size of the macromolecular nitroxide cap. It was confirmed that NMRP using this macroinitiator is a “living” process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2015–2025, 2007  相似文献   

15.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

16.
Gas/vapor‐deposition polymerization (GDP) of vinyl monomer is expected to exhibit a unique polymerization behavior different from its polymerization in the liquid phase. Free‐radical GDP of 2,2,3,3,3‐pentafluoropropyl methacrylate (FMA) was carried out with a conventional free‐radical initiator (azobisisobutyronitrile) on substrate surfaces. A linear relationship between the number‐average molecular weight and polymer yield was observed, and the consecutive copolymerization of methyl methacrylate (MMA) and FMA led to the formation of block copolymer P(MMA‐block‐FMA). These results suggested that the GDP process on substrate surfaces has a living nature. During the process, the active species at growing chain ends may be immobilized on the deposit surface and restricted from the chain‐transfer reactions, resulting in a continuation of the propagation reaction. The GDP on substrate surfaces is therefore a physically controlled polymerization process. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2621–2630, 2004  相似文献   

17.
The living synthesis of poly(1,3‐cyclohexadiene) was performed with an initiator adduct that was synthesized from a 1:2 (mol/mol) mixture of N,N,N,N′‐tetramethylethylenediamine (TMEDA) and n‐butyllithium. This initiator, which was preformed at 65 °C, facilitated the synthesis of high‐molecular‐weight poly(1,3‐cyclohexadiene) (number‐average molecular weight = 50,000 g/mol) with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.12). A plot of the kinetic chain length versus the time indicated that termination was minimized and chain transfer to the monomer was eliminated when a preformed initiator adduct was used. Chain transfer was determined to occur when the initiator was generated in situ. The polymerization was highly sensitive to both the temperature and the choice of tertiary diamine. The use of the bulky tertiary diamines sparteine and dipiperidinoethane resulted in poor polymerization control and reduced polymerization rates (7.0 × 10−5 s−1) in comparison with TMEDA‐mediated polymerizations (1.5 × 10−4 s−1). A series of poly(1,3‐cyclohexadiene‐block‐isoprene) diblock copolymers were synthesized to determine the molar crossover efficiency of the polymerization. Polymerizations performed at 25 °C exhibited improved molar crossover efficiencies (93%) versus polymerizations performed at 40 °C (80%). The improved crossover efficiency was attributed to the reduction of termination events at reduced polymerization temperatures. The microstructure of these polymers was determined with 1H NMR spectroscopy, and the relationship between the molecular weight and glass‐transition temperature at an infinite molecular weight was determined for polymers containing 70% 1,2‐addition (150 °C) and 80% 1,4‐addition (138 °C). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1216–1227, 2005  相似文献   

18.
The benzaldehyde derivatives, such as 2,4‐dimethoxy benzaldehyde (PC1) and p‐anisaldehyde (PC2), were successfully used as photoredox catalysts (PCs) in combination with typical RAFT agent 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoic acid (CTP) for the controlled photoinduced electron transfer RAFT polymerization (PET‐RAFT) of methyl methacrylate (MMA) and benzyl methacrylate (BnMA) at room temperature. The kinetics of the polymerizations showed first order with respect to monomer conversions. Besides, the average number molecular weights (Mn) of the produced polymers increased linearly with the monomer conversions and kept relatively narrow polydispersity (PDI = Mw/Mn). For example, the Mn of PMMA increased from about 3400 to 17,300 g mol−1 with the increasing in monomer conversion from 11% to 85%, and the PDI maintained around 1.36. The living features of polymerizations with the PC1 and PC2 as catalysts have also been further supported by chain extension and synthesis of PMMA‐b‐PBnMA diblock copolymer. As a result, the simplicity and efficiency of benzaldehyde derivatives catalyzed PET‐RAFT polymerization have been demonstrated under mild conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 229–236  相似文献   

19.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

20.
Phenol has been used as an additive to enhance the rate of SET‐LRP in toluene at ambient temperature. A direct relationship between reaction time and amount of phenol added has been found with the optimum amount being ~ 20 equiv. of phenol with respect to initiator. Polymerization of methyl acrylate (MA) has been carried out in the presence of varying amounts of phenol and the rate of polymerization depends on the concentration of phenol relative to initiator. With a 20‐fold excess 93% conversion is observed after 218 min (PDI = 1.06, Mn = 11,500 g mol?1) when compared with 80% conversion with a 5‐fold excess (PDI = 1.21, Mn = 5310 g mol?1). When nonsterically hindered phenols are employed in a 20 molar excess with respect to the initiator the polymerizations have good linear first‐order kinetics and give polymers with PDI between 1.06 and 1.16. When a highly hindered phenol is employed there is a significant induction period prior to polymerization taking place which is similar to when using no phenol. Less hindered phenols accelerated the polymerization when compared with polymerizations with no added phenol. Increasing steric hindrance at the ? OH prevents this coordination which indicates that the role of phenol is different with either copper(0) or copper(I). Aliphatic and aromatic esters and amides were used successfully as initiators giving polymers with Mn close to that predicted at ~ 10,000 g mol?1 and PDI typically less than 1.10. An induction period is observed in most cases which can be removed by a pre‐equilibrium step before the addition of monomer. This results in excellent first‐order kinetics being observed in the polymerization of MA in toluene solution (50 vol %). Here Cu(0) (powder)/Me6‐TREN with 20 equiv. of phenol and all of the reactants, except the monomer, were added to the reaction flask and stirred for 45 min at 25 °C. The structure of the polymer is shown by MALDI TOF MS to contain bromide chain ends derived from the alkyl bromide initiator. The retention of this end group is consistent with living radical polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7376–7385, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号