首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influences of the compression cycles and the precompression pressure on the piezoresistivity of carbon black‐filled silicone rubber composite. The experimental results show that if the load pressure is less than the maximum pressure in the precompression cycle, the repeatability of the piezoresistivity is improved with the increase of the compression cycles. Once the load pressure surpasses the maximum pressure in the precompression cycle, the piezoresistivity of the composite is changed distinctly. The experimental phenomena are explained and described qualitatively by analyzing the changes in the composite resistance under the zero pressure and the slippage of the molecule chain during the compression. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1050–1061, 2008  相似文献   

2.
Ethylene and 10‐undecen‐1‐ol copolymers, prepared using a nickel complex as catalyst, were studied using differential scanning calorimetry (DSC), X‐ray diffraction, and dielectric relaxation spectroscopy. The behavior exhibited by copolymers containing incorporated 10‐undecen‐1‐ol amounts within 0.5 and 4.6 mol % was compared with neat polyethylene. DSC revealed that a new crystalline region with lower thickness lamellae emerges in copolymers due to the side‐chains crystallization. Nevertheless, the global crystallization degree decreases due to the loss of crystallinity that occurs in a greater extent in PE‐like regions. Dielectric relaxation spectroscopy detected two processes, a low activation energy process below ?20 °C related with localized mobility increasing in intensity and deviating to higher temperatures with the increase in 10‐undecen‐1‐ol amount, and a high activation energy process ascribed to the glass transition, located at higher temperatures for the different copolymers relatively to neat polyethylene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2802–2812, 2007  相似文献   

3.
Conductive composite films of poly(styrene‐con‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007  相似文献   

4.
From high‐resolution dielectric spectroscopy measurements on 1,4‐polybutadiene (1,4‐PB), we show that in addition to the structural α‐relaxation and higher frequency secondary relaxations in the spectra, a nearly constant loss (NCL) is observed at shorter times/lower temperatures. The properties of this NCL are compared to those of another chemically similar polymer, 1,4‐polyisoprene. The secondary relaxations in 1,4‐PB include the well‐known Johari‐Goldstein (JG) β‐relaxation and two other higher‐frequency peaks. One of these, referred to as the γ‐relaxation, falls between the JG‐relaxation and the NCL. Seen previously by others, this γ‐relaxation in 1,4‐PB is not the JG‐process and bears no relation to the glass transition. At very low temperatures (<15 K), we confirm the existence of a very fast secondary relaxation, having a weak dielectric strength and an almost temperature‐invariant relaxation time. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 342–348, 2007  相似文献   

5.
Viscoelastic behavior at elevated temperatures of high‐density polyethylene and isotactic polypropylene was investigated by using the stress relaxation method. The results are interpreted from the view of an established two‐process model for stress relaxation in semicrystalline polymers. This model is based on the assumption that the stress relaxation can be represented as a superposition of two thermally activated processes acting in parallel. Each process is associated either with the crystal or amorphous phase of a polymer sample. It was found that the temperature dependence of viscosity coefficients and elastic moduli of these two fractions are similar in the two materials. The experimental data was correlated with literature data of α and β processes in polyethylene and polypropylene obtained from dynamic mechanical thermal analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3239–3246, 2000  相似文献   

6.
Poly(methyl methacrylate)/multiwalled carbon nanotube (PMMA/MWCNT) microspheres were successfully prepared by in situ dispersion polymerization in an alcohol phase in which the acid‐treated MWCNTs were dispersed before polymerization. The PMMA and PMMA/MWCNT microspheres were monodisperse. The diameters of the microspheres decreased from about 11.6–6.0 μm as the MWCNT content was increased from 0 to 0.03 wt %. The morphology of the PMMA/MWCNT microspheres was investigated by scanning electron microscopy, atomic force microscopy, and transmission electron microscopy, and the experimental results showed that the MWCNTs were present both in the interior and on the surface of the microspheres. The synthesized PMMA/MWCNT microspheres were also characterized by electrical resistance measurements to analyze their electrical conductivity. They showed electrorheological (ER) fluid characteristics when they were dispersed in silicone oil. Their ER properties were confirmed by using optical microscopy to examine a suspension of the PMMA/MWCNT microspheres dispersed in insulating silicone oil to which an electric field of 2.5 kV/cm was applied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 182–189, 2008  相似文献   

7.
A constitutive model for evaluating the compressive behavior of Poly(methyl‐methacrylate) (PMMA) open‐cell foams is herein proposed. Specifically, the study investigates the viscoelastic and viscoplastic behaviors of the PMMA open‐cell foams. The constitutive equation is expressed in terms of the following polymer and foam properties: elastic modulus, relative density, as well as the relaxation and densification constants. PMMA open‐cell foams are manufactured using a gas foaming/particulate leaching method and uniaxial compression tests are performed. The mechanical properties and compressive stress‐strain responses obtained from the experiments are compared with those predicted by the proposed constitutive model. The results suggest that the constitutive model is an apt one for assessing and evaluating the compressive behaviors of PMMA open‐cell foams. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 436–443, 2007  相似文献   

8.
Amorphous polymers exhibit a primary (glass, or α‐) relaxation process and a low‐temperature relaxation process associated with polymer backbone motion usually referred to as the β‐relaxation process. The latter process can be observed below the glass transition temperature of the polymer and usually merges with the α‐relaxation process at temperatures somewhat above the glass transition temperature. While it is widely held that both the α‐relaxation and β‐relaxation processes are engendered by localized (segmental) motions of the polymer backbone, and that there is a strong mechanistic connection between them, the molecular mechanisms of the α‐relaxation and β‐relaxation processes in amorphous polymers are not well understood. Recently, atomistic molecular dynamics simulations of melts and blends of 1,4‐polybutadiene have provided insight into the relationship between the α‐ and β‐relaxation processes in glass‐forming polymers and an improved understanding of their molecular origins. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 627–643, 2007  相似文献   

9.
Conductive hybrids were prepared in a water/ethanol solution via the sol–gel process from an inorganic sol containing carboxyl groups and water‐borne conductive polyaniline (cPANI). The inorganic sol was prepared by the hydrolysis and condensation of methyltriethoxysilane with the condensed product of maleic anhydride and aminopropyltriethoxysilane as a catalyst, for which the carboxyl counterion along the cPANI backbone acted as an electrostatic‐interaction moiety. The existence of this electrostatic interaction could improve the compatibility of the two components and contribute to the homogeneous dispersion of cPANI in the silica phase. The electrostatic‐interaction hybrids displayed a conductivity percolation threshold as low as 1.1 wt % polyaniline in an emeraldine base, showing 2 orders of magnitude higher electrical conductivity than that without electrostatic interactions. The electrostatic‐interaction hybrids also showed good water resistance; the electrical conductivity with a cPANI loading of 16 wt % underwent a slight change after 14 days of soaking in water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1424–1431, 2007  相似文献   

10.
In this article, the electromechanical properties of silver‐in‐epoxy conductive adhesives with the polyaniline (PANI) micron particles as cofillers have been investigated. PANI is a conductive polymer and has a moderate conductivity in between those of silver and epoxy. It was found that PANI can be used to tailor both the adhesive's electrical contact resistance and its relaxation behavior; however, the effects of adding PANI were complex. The addition of small amount of PANI (2 wt %) dramatically increased the contact resistance; it might block the electrical contacts among silver flakes and was not able to form a continuous path among themselves. The addition of more PANI showed a moderate increase in contact resistance, which increased with the weight fraction of PANI from 6 to 15 wt %. Interdependent behavior of compressive strain and relaxation in electrical contact resistance is characterized to evaluate the origin of this relaxation. The addition of PANI made the relaxation in electrical contact resistance more sensitive to the compressive strain and the electromechanical coupling to deviate from the linear relationship. These research findings provide insights into the way to use PANI to tailor the electromechanical properties of the adhesive bonds or joints in the development of advanced functional devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 1448–1455  相似文献   

11.
The effect of an external electrical field on phase behaviors is reported for polymer dispersed liquid crystal films of 4′‐pentyl‐4‐biphenylcarbonitrile/poly(methyl methacrylate) binary mixtures with various polymer molecular weights. The experimental results show that increasing the molecular weight of the polymer or the electrical field intensity can give rise to an increase in the phase‐transition temperature and a widening of the binary phase region. The lattice theory, regarding a binary system consisting of a rigid nematic liquid crystal and a random polymer, has been extended to the case in which an external electrical field is present. A comparison of the theoretical predictions with the experimental results has been carried out, and satisfactory agreement has been found. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1898–1906, 2007  相似文献   

12.
13.
The effect of hydrostatic pressure up to 1,361 atms on the dielectric properties of a segmented polyurethane elastomer (Dow 2103‐80AE) is studied at temperatures from 0°C to 80°C. The experimental results show that the relaxation time for both the I–process, associated with the molecular motions in the hard segments, and the α–process, associated with the glass transition, increases with pressure, and this shift is more pronounced for the I–process. Besides the glass transition, it is found that the I–process can be described by the Vogel–Fulcher (V–F) and Williams–Landel–Ferry (WLF) relations. At atmospheric pressure, Tg and T0 for the I–process are 235.9 K and 4.2 × 103 K, respectively. Based on the V–F and WLF relations and experimental results, it is found that a parameter, C1, in the WLF relation is independent of the pressure. Thus, a method is introduced to determine the values of both the characteristic transition temperature (Tg) and activation energy (T0) for the processes at different pressures. As the pressure increases from atmospheric to 1,361 atms, the increase of Tg for the I–process is about 30°C. The results also show that, for both the I– and the α–processes, T0 decreases with increasing pressure. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 983–990, 1999  相似文献   

14.
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007  相似文献   

15.
Dielectric spectroscopy was carried out to measure the α‐relaxation (local segmental motion) and the higher frequency, secondary relaxation (β‐mode) in 1,4‐polybutadiene, both neat and containing a nonpolar diluent, mineral oil. The α‐relaxation shifted to lower frequencies (antiplasticization) in the presence of the diluent, suggesting the glass temperature of the latter is higher than the Tg of the polymer (i.e., >187K). The Tg of neat mineral oil cannot be determined directly, due to crystallization. While the diluent increased the magnitude of the α‐relaxation times, it had no effect on the β‐relaxation. Moreover, neither the shape of the α‐relaxation function nor its temperature dependence was influenced by the diluent. From this we conclude that the main effect of the mineral oil was to increase the local friction, without changing the degree of intermolecular cooperativity of the molecular motions. We also find that near the glass temperature, there is rough agreement between the time scale of the secondary relaxation process and the value of a noncooperative relaxation time estimated from theory. This approximate correspondence between the two relaxation times also holds for 1,2 polybutadiene. However, the β‐process cannot be identified with the noncooperative α‐relaxation, and the relationship between them is not quantitative. © 2000 John Wiley & Sons, Inc.* J Polym Sci B: Polym Phys 38: 1841–1847, 2000  相似文献   

16.
In oil well treatments, such as matrix stimulations or water shut‐off, it is often necessary to temporary isolate or protect productive zones with chemical diverting agents. In this work, a solution of peroxide crosslinked styrene‐butadiene rubber (SBR) has been transformed to a self‐degradable gel system by adding hydroperoxide as a degradation agent to the formulation. This oil‐based self‐degradable gel has been characterized by linear oscillatory rheometry. In situ and ex situ experiments were performed to evaluate the evolution of crosslinking and degradation reactions, including the liquid‐solid transition. Relaxation time spectra were calculated from dynamic mechanical frequency sweeps. Structural changes in the polymer network were visible within the relaxation time spectra, since it qualitatively showed the contribution of local simple entanglements and chemical covalent bonds to the final rheological behavior. The influence of peroxide concentration, polymer concentration, hydroperoxide concentration, and temperature have been studied and described in terms of rheological changes. Finally, a hydrogen donor aromatic solvent was used as scavenger to retard both crosslinking and degradation reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 433–444  相似文献   

17.
The present work reports a discrete, stress-dependent dynamic compliance spectra method which may be used to predict the mechanical response of nonlinear viscoelastic polymers during strain-defined processes. The method is based on the observation that the real and complex parts of the discrete dynamic compliance frequency components obtained from creep measurements are smooth, easily fit functions of stress. Comparisons between experimental measurements and model calculations show that the model exhibits excellent quantitative agreement with the basis creep measurements at all experimental stress levels. The model exhibits good quantitative agreement with stress relaxation measurements at moderate levels of applied strain. However, the model underestimates the experimental stress relaxation at an applied strain of 3.26%. The stress relaxation error appears to be a real material effect resulting from the different strain character of creep and stress relaxation tests. The model provides a good quantitative agreement with experimental constant strain rate measurements up to approximately 4% strain, after which the model underestimates the experimental flow stress. This effect is explained by the time dependence of the stress-activated configurational changes necessary for large strains in glassy polymers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2301–2309, 1998  相似文献   

18.
The tensile and stress‐relaxation properties of an uncrosslinked and a loosely silane‐crosslinked high‐density polyethylene exposed to organic “crude‐oil” penetrants were assessed. The measurements were performed on penetrant‐saturated samples, surrounded by the organic liquid throughout the experiment. The penetrant solubilities in the two polymers were similar and in accordance with predicted values based on the solubility parameter method. The stiffness and strength of the swollen samples were significantly less than those of the dry samples, indicating a plasticization of the amorphous component. Raman spectroscopy on polyethylene exposed to deuterated n‐hexane revealed a penetrant‐induced partial melting/dissolution of the crystal surface and an intact crystal core component. The stress‐relaxation rates, within the time frame of the experiment (~1 s to 18 h), were approximately the same, independent of silane‐crosslinks and the presence of penetrants. This indicated that the mechanical α‐relaxation, which is the main relaxation process occurring in the measured time interval, was not affected by the penetrants. Consequently, its rate seemed to be independent of the crystal surface dissolution (decrease in the content of crystal‐core interface). The shape of the “log stress–log time” curves of the swollen samples was, however, different from that of the dry samples. This was most likely attributed to a time‐dependent saturation of penetrant to a higher level associated with the stretched state of the polymer sample. The silane crosslinks affected only the elongation at break, which was less than that of the uncrosslinked material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 641–648, 2006  相似文献   

19.
The dimensional stability of thermoplastics is characterized by their tensile compliance D(t,σ,T) as a function of time t, stress σ, and temperature T. Creep retardation times are controlled by the free volume available for underlying molecular (segmental) motions. Tensile deformation of polymeric materials, whose Poisson ratio is smaller than 0.5, is accompanied by volume dilatation that can be identified with an increase in available free volume. Consequently, a steady increase in strain with time during tensile creep experiments accounts for shortening of the retardation times. The superposition of as‐received tensile compliance curves is difficult because any point of a curve requires a shift factor along the time axis that differs from those of other points. In this article, tensile creep at a constant stress and temperature is viewed as a non‐iso free‐volume process. A procedure is proposed to transform as‐received data to a pseudo‐iso free‐volume state that eliminates this deficiency and permits construction of a generalized compliance curve for the pseudo‐iso free‐volume state. This curve can be used for calculation of real‐time‐dependent compliance for any selected stress in the range of reversible deformations. As the superposed curve can be generated with several short‐term creep tests (e.g., 100 min) for a series of stresses, the proposed procedure saves experimental time. The effects of physical aging on tensile compliance (observed previously by other researchers) are interpreted in terms of the proposed approach in appendix A . © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 736–748, 2003  相似文献   

20.
In this work, we report a Kelvin probe microscopy investigation on the structural and electronic properties of gold and aluminum thin films evaporated on poly(3‐octyl‐thiophene) films. Our experimental setup allows us to perform scanning force microscopy (SFM) studies of the same area even if the sample is taken out of the SFM system for different processes (Au and Al evaporation). This allows a detailed study of the effect of adsorbed metal particles on the morphology and electrical properties of polymer thin films at the nanoscale. We found different behavior for both metals in morphology and electrical properties at the interface. These results can contribute to explain what happens at the metal–polymer interface of the devices when the metal contacts are grown. Thereby the observed nanoscale structural changes can be correlated with the overall performance of the fabricated devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1083–1093  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号