首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

2.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

4.
A series of perfluorocyclobutyl (PFCB) aryl ether‐based amphiphilic diblock copolymers containing hydrophilic poly(acrylic acid) (PAA) and fluorophilic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) segments were synthesized via successive atom transfer radical polymerization (ATRP). 2‐MBP‐initiated and CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine‐catalyzed ATRP homopolymerization of the PFCB‐containing methacrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate, can be performed in a controlled mode as confirmed by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.38. The block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.36) were synthesized by ATRP using Br‐end‐functionalized poly(tert‐butyl acrylate) (PtBA) as macroinitiator followed by the acidolysis of hydrophobic PtBA block into hydrophilic PAA segment. The critical micelle concentrations of the amphiphilic diblock copolymers in different surroundings were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the micelles were investigated by transmission electron microscopy and dynamic laser light scattering, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
We report the synthesis and characterization of a series of novel diblock copolymers, poly(cholesteryl methacrylate‐b‐2‐hydroxyethyl methacrylate) (PCMA‐b‐PHEMA). Monomers, cholesteryl methacrylate (CMA) and 2‐(trimethylsiloxy)ethyl methacrylate (HEMA‐TMS), were prepared from methyacryloyl chloride and 2‐hydroxyethyl methacrylate, respectively. Homopolymers of CMA, PCMA, with well‐defined molecular weights and polydispersity indices (PDI), were prepared by reversible addition fragmentation and chain transfer (RAFT) method. Precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), were synthesized using PCMA as macromolecular chain transfer agent and monomer, HEMA‐TMS. Product diblock copolymers, PCMA‐b‐PHEMA, were prepared by deprotecting trimethylsilyl units in the precursor diblock copolymers using acid catalysts. Detailed molecular characterization of the precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), and the product diblock copolymers, PCMA‐b‐PHEMA, confirmed the composition and structure of these polymers. This versatile synthetic strategy can be used to prepare new amphiphilic block copolymers with cholesterol in one block and hydrogen‐bonding moieties in the second block. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6801–6809, 2008  相似文献   

7.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

8.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Optically active polymers bearing chiral units at the side chain were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in the presence of 2,2′‐azobisisobutyronitrile (AIBN)/benzyl dithiobenzoate (BDB), using a synthesized 6‐Op‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose (VBPG) as the monomer. The experimental results suggested that the polymerization of the monomer proceeded in a living fashion, providing chiral group polymers with narrow molecular weight distributions. The optically active nature of the obtained poly (6‐Op‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose) (PVBPG) was studied by investigating the dependence of specific rotation on the molecular weight of PVBPG and the concentration of PVBPG in tetrahydrofuran (THF). The results showed the specific rotation of PVBPG increased greatly with the decrease of the concentration of the PVBPG homopolymer. In addition, the effect of block copolymers of PVBPG on the optically active nature was also investigated by preparing a series of diblock copolymers of poly(methyl methacrylate) (PMMA)‐b‐PVBPG, polystyrene (PS)‐b‐PVBPG, and poly(methyl acrylate) (PMA)‐b‐PVBPG. It was found that both the homopolymer and the diblock copolymers possessed specific rotations. Finally, the ability of chiral recognition of the PVBPG homopolymer was investigated via an enantiomer‐selective adsorption experiment. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3788–3797, 2007  相似文献   

10.
The polymerization of MMA, at ambient temperature, mediated by dansyl chloride is investigated using controlled radical polymerization methods. The solution ATRP results in reasonably controlled polymerization with PDI < 1.3. The SET‐LRP polymerization is less controlled while SET‐RAFT polymerization is controlled producing poly(methyl methacrylate) (PMMA) with the PDI < 1.3. In all the cases, the polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The R group in the CTAs do not appear to play a key role in controlling the propagation rate. SET‐RAFT method appears to be a simpler tool to produce methacrylate polymers, under ambient conditions, in comparison with ATRP and SET‐LRP. Fluorescent diblock copolymers, P(MMA‐b‐PhMA), were synthesized. These were highly fluorescent with two distinguishable emission signatures from the dansyl group and the phenanthren‐1‐yl methacrylate block. The fluorescence emission spectra reveal interesting features such as large red shift when compared to the small molecule. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

13.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

14.
This investigation reported the preparation of fluorinated and nonamphiphilic well‐defined poly(styrene)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PS‐b‐PHFBMA) diblock copolymers via atom transfer radical polymerization (ATRP). Their chemical composition, structure, and bulk morphology were thoroughly investigated. In addition, their self‐assembly behavior in a dilute organic mixture solution was investigated. It was found that that the ATRP could be used to prepare the well‐defined fluorinated and nonamphiphilic PS‐b‐PHFBMA diblock copolymers in a controlled manner. The results also showed that abundant morphologies including sphere, worm‐like structure, and vesicle could be formed with different volume ratios of these two solvents, which proves that the nonamphiphilic fluorinated diblock copolymers can self‐assemble in a dilute solution, and the aforementioned reason for self‐assembly was also discussed preliminarily in this work. Finally, the effect of temperature on the aggregates was investigated to verify whether the self‐assembly behavior was to some extent temperature sensitive. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

16.
The diblock copolymers of polystyrene and poly(tert‐butyl acrylate) (PSt‐b‐PtBA) with various molecular weights and hydrophobic/hydrophilic (styrene/acrylic acid) chain length were prepared by atom transfer radical polymerization (ATRP). Selective hydrolysis of the diblock copolymers (PSt‐b‐PtBA) resulted in amphiphilic block copolymers of polystyrene and poly(acrylic acid) (PSt‐b‐PAA). The amphiphilic block copolymers of PSt‐b‐PAA with average molecular weight (Mn) <7500 were proved to be critical in dispersing the pigments of UV curable ink‐jet inks for manufacturing the color filter. Incorporating DB2 diblock copolymer dispersants with styrene/acrylic acid ratio at 1.5 allowed more UV curable compositions in the red and blue inks without deteriorating pigment dispersing stability and jetting properties of the ink‐jet inks. The ink drops can be precisely ejected into the tiny color area. Better properties of the cured red stripe such as nanoindentation hardness and chemical resistance were found. The competing absorption of UV light by the blue pigment hindered the through cure of monomers near the interface between glass substrate and the blue stripe. This leads to lower hardness and poor chemical resistance of the UV cured blue stripe. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3337–3353, 2005  相似文献   

17.
Two functional monomers, methacrylic acid 4‐(2‐benzoxazol)‐benzyl ester (MABE) containing the benzoxazole group and 4‐(2‐(9‐anthryl))‐vinyl‐styrene (AVS) containing the anthracene group were synthesized by rational design. The MABE was polymerized via atom transfer radical polymerization (ATRP) using ethyl 2‐bromoisobutyrate (EBIB) as initiator in CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) catalyst system; block copolymers poly(MABE‐b‐AVS) was obtained, which was conducted by using poly(MABE) as macro‐initiator, AVS as the second monomer, and CuBr/PMDETA as catalyst. The constitute of two monomers in block copolymers poly(MABE‐b‐AVS) by ATRP could be adjusted, that is the constitute of the benzoxazole group and the anthracene group could be controlled in AB‐type block copolymers. Moreover, the fluorescent properties of homopolymers poly(MABE) and block copolymers poly(MABE‐b‐AVS) were discussed herein. With the excitation at λex = 330 nm, the fluorescent emission spectrum of poly(MABE) solution showed emission at 375 nm corresponding to the benzoxazole‐based part; with the same excitation, the fluorescent emission spectrum of poly(MABE‐b‐AVS) solution showed a broad peek at 330–600 nm when the monomer AVS to the total monomers mole ratio was 0.31, and the fluorescent emission spectrum of poly(MABE‐b‐AVS) in film state only showed one peak at 525 nm corresponding to the anthracene‐based unit that indicated a complete energy transfer from the benzoxazole group to the anthracene group. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3894–3901, 2007  相似文献   

18.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


19.
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683  相似文献   

20.
A series of well‐defined poly[methyl(3,3,3‐trifluoropropyl)siloxane]‐b‐polystyrene‐b‐poly(tert‐butyl acrylate) (PMTFPS‐b‐PS‐b‐PtBA) triblock copolymers were prepared by a combination of anionic ring‐opening polymerization of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3), and atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), using the obtained α‐bromoisobutyryl‐terminal PMTFPS (PMTFPS‐Br) as the macroinitiators. The ATRP of St from PMTFPS‐Br, as well as the ATRP of tBA from the obtained PMTFPS‐b‐PS‐Br macroinitiators, has typical characteristic of controlled/living polymerization. The results of contact angle measurements for the films of PMTFPS‐b‐PS‐b‐PtBA triblock copolymers demonstrate that the compositions have an effect on the wetting behavior of the copolymer films. For the copolymer films with different compositions, there may be different macroscale or nanoscale structures on the outmost layer of the copolymer surfaces. The films with high content of PtBA blocks exhibit almost no ordered microstructures on the outmost layer of the copolymer surfaces, even though they have microphase‐separated structures in bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号