首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Hydroxyl‐terminated poly(ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) was synthesized by the nucleophilic substitution reaction of 4,4′‐difluorobenzophenone with tert‐butyl hydroquinone with potassium carbonate as a catalyst and N‐methyl‐2‐pyrrolidone as a solvent. Diglycidyl ether of bisphenol A epoxy resin was toughened with PEEKTOHs having different molecular weights. The melt‐mixed binary blends were homogeneous and showed a single composition‐dependent glass‐transition temperature (Tg). Kelley–Bueche and Gordon–Taylor equations gave good correlation with the experimental Tg. Scanning electron microscopy studies of the cured blends revealed a two‐phase morphology. A sea‐island morphology in which the thermoplastic was dispersed in a continuous matrix of epoxy resin was observed. Phase separation occurred by a nucleation and growth mechanism. The dynamic mechanical spectrum of the blends gave two peaks corresponding to epoxy‐rich and thermoplastic‐rich phases. The Tg of the epoxy‐rich phase was lower than that of the unmodified epoxy resin, indicating the presence of dissolved PEEKTOH in the epoxy matrix. There was an increase in the tensile strength with the addition of PEEKTOH. The fracture toughness increased by 135% with the addition of high‐molecular‐weight PEEKTOH. The improvement in the fracture toughness was dependent on the molecular weight and concentration of the oligomers present in the blend. Fracture mechanisms such as crack path deflection, ductile tearing of the thermoplastic, and local plastic deformation of the matrix occurred in the blends. The thermal stability of the blends was not affected by blending with PEEKTOH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 541–556, 2006  相似文献   

2.
Blends of a tetrafunctional epoxy resin, tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM), and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3′‐diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS‐cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS‐cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP‐rich particles are dispersed in the continuous cured epoxy‐rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 417–424, 2010  相似文献   

3.
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF), in concentrations ranging from 5 to 15 wt %. The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone (DDS) or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) (MCDEA). Using phase diagrams developed in Part I of this series, thermal cycles are selected to generate different morphologies. It is found that, whatever the AD employed, a particulate morphology is obtained when curing blends that are initially homogeneous. In the case of DDS‐cured blends, a unimodal particle size distribution of PSF and PEI dispersed in a continuous epoxy‐rich phase is observed. By contrast, the MCDEA‐cured blends show a bimodal particle size distribution for all PSF/PEI relations that are analyzed. A completely different morphology, characterized by a distribution of irregular TP‐rich domains dispersed in an epoxy‐rich phase (double phase morphology), is obtained when curing blends that are initially immiscible. An X‐ray analysis of the different phases makes it possible to determine their qualitative composition. The dynamic mechanical behavior of fully cured blends is also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3964–3975, 2004  相似文献   

4.
Using a microthermal analyzer TA Instruments 2990 μTA, we have analyzed the morphologies developed for the resin tetraglycidyl‐4,4′‐diaminodiphenylmethane cured with an aromatic amine 4,4′‐diaminodiphenylsulphone modified with different amounts of poly(styrene‐co‐acrylonitrile) (SAN) thermoplastic. The phase‐separation phenomenon induced by polymerization was also followed by scanning electron microscopy. Using the modulated local thermal‐analysis mode of μTA, the glass‐transition temperatures of different domains for each sample were evaluated. Dynamic mechanical analyzer experiments were made to evaluate the macroscopic thermal properties of the blends. A morphology was well established for all blends examined with these techniques showing a nodular structure, the epoxy‐rich phase, and a continuous phase, the SAN‐rich phase, that forms the matrix. From both microscopic and macroscopic thermal analyses, it is concluded that a phase separation exists for the blends investigated. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 284–289, 2002  相似文献   

5.
A novel liquid‐crystalline epoxy resin combining biphenyl and aromatic ester‐type mesogenic units, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl, was synthesized. Its spectroscopic structure, thermal properties, and phase structures were investigated with NMR, differential scanning calorimetry (DSC), and polarized light microscopy (PLM), respectively. The curing agent, diaminodiphenylsulfone, was chosen to investigate the curing behavior by means of DSC and PLM during isothermal and nonisothermal processes. Only one exothermal peak appeared in the isothermal DSC curves. Birefringence was also observed during the curing processes and preserved after postcuring. Compared with short rigid‐rod and flexible epoxies, the cured liquid‐crystalline epoxy resin that was obtained displayed special thermal stability according to thermogravimetric analysis because of its long rigid‐rod mesogenic unit and bulky methyl groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 727–735, 2007  相似文献   

6.
The properties of diglycidyl ether of bisphenol-A epoxy resin toughened with poly(ether sulfone ether ketone) (PESEK) and poly(ether sulfone) (PES) polymers were investigated. PESEK was synthesised by the nucleophilic substitution reaction of 4,4’-difluorobenzophenone with dihydroxydiphenylsulfone using sulfolane as solvent and potassium carbonate as catalyst at 230 °C. The T g–composition behaviour of the homogeneous epoxy resin/PESEK blend was modelled using Fox, Gordon–Taylor and Kelley–Bueche equations. A single relaxation near the glass transition of epoxy resin was observed in all the blend systems. From dynamic mechanical analysis, the crosslink density of the blends was found to decrease with increase in the thermoplastic concentration. The storage modulus of the epoxy/PESEK blends was lower than that of neat resin, whilst it is higher for epoxy/PES blends up to glass transition temperature, thereafter it decreases. Scanning electron microscopic studies of the blends revealed a homogeneous morphology. The homogeneity of the blends was attributed to the similarity in chemical structure of the modifier and the cured epoxy network and due to the H-bonding interactions between the blend components. The fracture toughness of epoxy resin increased on blending with PESEK and PES. The increase in fracture toughness was due to the increase in ductility of the matrix. The thermal stability of the blends was comparable to that of neat epoxy resin.  相似文献   

7.
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4′‐diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM‐cured epoxy/HBP blends with HBP content up to 40 wt % were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy‐rich phase and an HBP‐rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt %, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt % HBP exhibits a combined morphology of connected globules and bicontinuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100–300 nm were formed after the HBP‐rich phase was extracted with solvent from the cured blend with 40 wt % HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 889–899, 2006  相似文献   

8.
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006  相似文献   

9.
PS‐b‐PCL block copolymer is used to study its influence on the phase evolution of epoxy resin/polyetherimides (PEI) blends cured with methyl tetrahydrophthalic anhydride. The effect of PS‐b‐PCL on the reaction‐induced phase separation of the thermosetting/thermoplastic blends is studied via optical microscopy, scanning electron microscope, and time‐resolved light scattering. The results show that secondary phase separation and typical phase inverted morphologies are obtained in the epoxy/PEI blends with addition of PS‐b‐PCL. It can be attributed to the preferential location of the PS‐b‐PCL in the epoxy‐rich phase, which enhances the viscoelastic effect of epoxy/PEI system and leads to a dynamic asymmetry system between PEI and epoxy. The PS‐b‐PCL block copolymer plays a critical role on the balance of the diffusion and geometrical growth of epoxy molecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1395–1402  相似文献   

10.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

11.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   

12.
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF). The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline). The influence of the TPs on the epoxy–amine kinetics is investigated. It is found that PSF can act as a catalyst. The presence of the TP provokes an increase of the gel times. Cloud‐point curves (temperature vs. composition) are shown for epoxy/PSF/PEI and epoxy/PSF/PEI/AD initial mixtures. Phase separation conversions are reported for the reactive mixtures with various TP contents and PSF/PEI proportions. On the basis of phase separation and gelation curves, conversion–composition phase diagrams at constant temperature are generated for both systems. These diagrams can be used to design particular cure cycles to generate different morphologies during the phase separation process, which is discussed in the second part of this series. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3953–3963, 2004  相似文献   

13.
The synthesis of a new diamine monomer, Nn‐butyl 3,12‐diamino‐5,6,9,10‐tetrahydro[5]helicene‐7,8‐dicarboxylic imide (4), that contains a helically locked, U‐shaped 4′,4″‐o‐terphenyl moiety is described. The monomer was polymerized with 3,3′,4,4′‐oxydiphthalic dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane to form a series of copoly(ether imide)s (5a–e). The incorporation of 4 into the poly(ether imide)s varied the glass‐transition temperature of the copolymers of which it was a part. There was a tendency to form macrocyclic materials at higher molar percentages of 4 during polymerization. The fluorescence of all the copoly(ether imide)s gradually decreased as the content derived from monomer 4 increased in the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 758–763, 2000  相似文献   

14.
A multifunctional epoxy resin has been demonstrated to be an efficient reactive compatibilizer for the incompatible and immiscible blends of polyamide‐6 (PA 6) and polybutylene terephthalate (PBT). The torque measurements give indirect evidence that the reaction between PA and PBT with epoxy has an opportunity to produce an in situ formed copolymer, which can be as an effective compatibilizer to reduce and suppress the size of the disperse phase, and to greatly enhance mechanical properties of PA/PBT blends. The mechanical property improvement is more pronounced in the PA‐rich blends than that in the PBT‐rich blends. The fracture behavior of the blend with less than 0.3 phr compatibilizer is governed by a particle pullout mechanism, whereas shear yielding is dominant in the fracture behavior of the blend with more than 0.3 phr compatibilizer. As the melt and crystallization temperatures of the base polymers are so close, either PA or PBT can be regarded as a mutual nucleating agent to enhance the crystallization on the other component. The presence of compatibilizer and in situ formed copolymer in the compatibilized blends tends to interfere with the crystallization of the base polymers in various blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 23–33, 2000  相似文献   

15.
For the living ring‐opening polymerization (ROP) of epoxy monomers, the catalytic activity of organic superbases, tert‐butylimino‐tris(dimethylamino)phosphorane, 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2Λ5,4Λ5‐catenadi(phosphazene), 2,8,9‐triisobutyl‐2,5,8,9‐tetraaza‐1‐phosphabicyclo[3.3.3]undecane, and 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis[tris(dimethylamino)phosphoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐Bu‐P4), was confirmed. Among these superbases, only t‐Bu‐P4 showed catalytic activity for the ROP of 1,2‐butylene oxide (BO) to afford poly(1,2‐butylene oxide) (PBO) with predicted molecular weight and narrow molecular weight distribution. The results of the kinetic, post‐polymerization experiments, and MALDI‐TOF MS measurement revealed that the t‐Bu‐P4‐catalyzed ROP of BO proceeded in a living manner in which the alcohol acted as the initiator. This alcohol/t‐Bu‐P4 system was applicable to the glycidol derivatives, such as benzyl glycidyl ether (BnGE) and t‐butyl glycidyl ether, to afford well‐defined protected polyglycidols. The α‐functionalized polyethers could be obtained using different functionalized initiators, such as 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 6‐azide‐1‐hexanol. In addition, the well‐defined cyclic‐PBO and PBnGE were successfully synthesized using the combination of t‐Bu‐P4‐catalyzed ROP and click cyclization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A study is reported, dealing with the microstructure and thermal behavior of the homopolymers of 1,1,1,3,3,3‐hexafluoroisopropyl methacrylate (HFIM) and 1,1,1,3,3,3‐hexafluoroisopropyl α‐fluoroacrylate (HFIFA), as well as of their copolymers with various vinyl ethers. The aim of this work was a better understanding of the role that fluorine content and distribution—first in the monomer and then along the ensuring macromolecular chain—play in determining the polymerizability of the selected vinyl monomers, and the final properties of the polymeric material. Primary (n‐butyl, isobutyl, 2‐ethylhexyl), secondary (cyclohexyl), and tertiary (tert‐butyl) vinyl ethers were employed as the comonomers. A general tendency towards comonomer alternation was observed upon radical initiated copolymerization with HFIFA. On the other hand, the relatively more electron‐rich HFIM did not usually yield strictly alternating sequences, unless the bulky tert‐butyl vinyl ether was employed. The incorporation of electron‐rich vinyl ether monomers within a partially fluorinated polymeric chain by simple radical initiated process was considered particularly interesting in view of the possible application of these materials as water‐repellent protective coatings. In this case, the fluorinated units should provide the low energy surface (water repellency) and, possibly, photo‐ and thermostability, whereas the vinyl ether counits should grant improved adhesion and adequate film‐forming properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 32–45, 2001  相似文献   

17.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

18.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

19.
Three series of aromatic polyimides with 4‐(carbazol‐9‐yl)triphenylamine moieties were prepared from the polycondensation reactions of 4,4′‐diamino‐4″‐(carbazol‐9‐yl) triphenylamine (1), 4,4′‐diamino‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)triphenylamine (t‐Bu‐1), and 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl)triphenylamine (MeO‐1), respectively, with various commercially available tetracarboxylic dianhydrides. In addition to high thermal stability and good film‐forming ability, the resulting polyimides exhibited an ambipolar electrochromic behavior. The polyimides based on t‐Bu‐1 and MeO‐1 revealed higher redox‐stability and enhanced electrochromic performance than the corresponding ones based on 1 because the active sites of their carbazole units are blocked with bulky t‐butyl or electron‐donating methoxy groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1172–1184  相似文献   

20.
The curing kinetics of a novel liquid crystalline epoxy resin with combining biphenyl and aromatic ester‐type mesogenic unit, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl (DGE‐BHBTMBP), and the curing agent diaminodiphenylsulfone (DDS) was studied using the advanced isoconvensional method (AICM). DGE‐BHBTMBP/DDS curing system was investigated the curing behavior by means of differential scanning calorimetry (DSC) during isothermal and nonisothermal processes. Only one exothermal peak appeared in isothermal DSC curves. A variation of the effective activation energy with the extent of conversion was obtained by AICM. Three different curing stages were confirmed. In the initial curing stage, the value of Ea is dramatically decreased from ~90 to ~20 kJ/mol in the conversion region 0–0.2 for the formation of LC phase. In the middle stage, the value of Ea keeps about ~80 kJ/mol for cooperative effect of reaction mechanism and diffusion control. In the final stage, a significant increase of Ea from 84 to 136 kJ/mol could be caused by the mobility of longer polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3922–3928, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号