首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Esterification of a single diastereomer of 2‐(4‐methylene­cyclohex‐2‐enyl)propanol, (II), with (1R,4S)‐(+)‐camphanic acid [(1R,4S)‐4,7,7‐trimethyl‐3‐oxo‐2‐oxabicyclo[2.2.1]heptane‐1‐carboxylic acid] leads to the crystalline title compound, C20H28O4. The relative configuration of the camphanate was determined by X‐ray diffraction analysis. The outcome clarifies the relative and absolute stereochemistry of the naturally occurring bisabolane sesquiterpenes β‐turmerone and β‐sesquiphellandrene, since we have converted (II) into both natural products via a stereospecific route.  相似文献   

2.
3.
Stereoselective hydroboration of (?)‐isopulegol and subsequent fractional crystallization furnishes the title compound, C10H20O2. The relative configuration of the stereogenic centres has been assigned by means of X‐ray diffraction analysis since the monoterpenediol is employed as a versatile chiral building block in stereospecific natural product synthesis.  相似文献   

4.
By introducing a disposable activating substituent at C‐3, the asymmetric 1,4‐addition to a notoriously unreactive 2‐substituted chromenone was achieved with high levels of (2R)‐stereoselectivity in the presence of a chiral CuI‐phosphoramidite complex as a catalyst. This paved the way for an efficient and conceptually novel synthesis of (R,R,R)‐α‐tocopherol from readily available starting materials.  相似文献   

5.
6.
Based on the asymmetric copper‐catalyzed 1,2‐addition of Grignard reagents to ketones, (R,R,R)‐γ‐tocopherol has been synthesized in 36 % yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73 % ee by the 1,2‐addition of a phytol‐derived Grignard reagent to an α‐bromo enone prepared from 2,3‐dimethylquinone.  相似文献   

7.
The absolute configuration at the new stereogenic centre during the key step of the total synthesis was established byX‐ray analysis of the title compound, C7H15NO4+·Cl?.  相似文献   

8.
The conformational diversity of the (3R,4S,8R,9R)‐9‐[(3,5‐bis(trifluoromethyl)phenyl))‐thiourea](9‐deoxy)‐epi‐cinchonine organocatalyst is discussed. Low‐temperature NMR experiments confirmed a self‐association process, which promotes the quinoline rotation between two intramolecularly hydrogen‐bonded monomeric conformers of the catalyst. The balanced population of the coexisting monomeric and dimeric species allowed us to conduct a structural study of a rather complex conformational dynamics of the pure catalyst. The study is extended by a comparison with other members of the bifunctional amine‐thiourea organocatalyst family. Changes in the molecular structure of the catalysts influence the interplay between intra‐ and intermolecular hydrogen bonding, and yield different extent of catalyst self‐association. By assessing the conformation of the individual states, we established the thermodynamic model of a self‐association promoted conformational transition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The reduction of (1R,8R,11R)‐3,3,11‐tri­methyl‐6,6‐ethyl­ene­dioxy­bi­cyclo­[6.3.0]­undecan‐2‐one, C16H26O3, (I), gave exclusively an alcohol, C16H28O3, (II). The stereochemistry of the hydroxyl group in (II) was shown as R. The conformation around the eight‐membered carbocycle in (I) differs markedly from that in (II).  相似文献   

10.
Circular dichroism (CD) spectroscopy was used to distinguish between the isomeric (all‐E)‐configured 3′‐epilutein ( 2 ) and 6′‐epilutein ( 8 ) to establish the absolute configuration of epilutein samples of different (natural and semisynthetic) origin, including samples of 2 obtained from thermally processed sorrel. Thus, the CD data of lutein ( 1 ) and epilutein samples ( 2 ) were compared. Our results unambiguously confirmed the (3R,3′S,6′R)‐configuration of all epilutein samples. Compound 2 was thoroughly characterized, and its 13C‐NMR data are published herewith for the first time.  相似文献   

11.
The relative configuration was determined for the title com­pound, C26H34O6, which was prepared in a synthetic study on immunosuppressant FR­65­814. There is an intra­mol­ecular hydrogen bond between the hydroxy and epoxy groups.  相似文献   

12.
The configuration of the chiral ring atoms of the title compound, C26H26N2O, obtained in an enantioselective synthesis, has been established relative to the known R configuration of the α‐methyl­benzyl moieties. The crystal packing involves a two‐dimensional network of C—H?π interactions between the aromatic rings.  相似文献   

13.
马楠  马大为 《中国化学》2003,21(10):1356-1359
Asymmetric synthesis of irnigaine was achieved starting from an enantiopure β-amino ester 5 using the condensation of amino al-cohol 2 with acetylacetone and the subsequent intramolecular cycllzation as the key steps.  相似文献   

14.
The synthesis of 46 derivatives of (2R,3R,4S)‐2‐(aminomethyl)pyrrolidine‐3,4‐diol is reported (Scheme 1 and Fig. 3), and their inhibitory activities toward α‐mannosidases from jack bean (B) and almonds (A) are evaluated (Table). The most‐potent inhibitors are (2R,3R,4S)‐2‐{[([1,1′‐biphenyl]‐4‐ylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 3fs ; IC50(B)=5 μM , Ki=2.5 μM ) and (2R,3R,4S)‐2‐{[(1R)‐2,3‐dihydro‐1H‐inden‐1‐ylamino]methyl}pyrrolidine‐3,4‐diol ( 3fu ; IC50(B)=17 μM , Ki=2.3 μM ). (2S,3R,4S)‐2‐(Aminomethyl)pyrrolidine‐3,4‐diol ( 6 , R?H) and the three 2‐(N‐alkylamino)methyl derivatives 6fh, 6fs , and 6f are prepared (Scheme 2) and found to inhibit also α‐mannosidases from jack bean and almonds (Table). The best inhibitor of these series is (2S,3R,4S)‐2‐{[(2‐thienylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 6o ; IC50(B)=105 μM , Ki=40 μM ). As expected (see Fig. 4), diamines 3 with the configuration of α‐D ‐mannosides are better inhibitors of α‐mannosidases than their stereoisomers 6 with the configuration of β‐D ‐mannosides. The results show that an aromatic ring (benzyl, [1,1′‐biphenyl]‐4‐yl, 2‐thienyl) is essential for good inhibitory activity. If the C‐chain that separates the aromatic system from the 2‐(aminomethyl) substituent is longer than a methano group, the inhibitory activity decreases significantly (see Fig. 7). This study shows also that α‐mannosidases from jack bean and from almonds do not recognize substrate mimics that are bulky around the O‐glycosidic bond of the corresponding α‐D ‐mannopyranosides. These observations should be very useful in the design of better α‐mannosidase inhibitors.  相似文献   

15.
Crystals of the title complex, C3H7NO2·C8H8O3·0.5H2O, were obtained from an aqueous solution containing racemic mandelic acid and (S)‐alanine. The unit cell includes two independent molecular complexes and one water molecule. The structure formed by (R)‐mandelic acid and (S)‐alanine in a 1:1 molar ratio shows the successful optical separation of racemic mandelic acid. Strong hydrogen bonding, with a rather short O?O separation of 2.494 (3) Å, is observed between the carboxyl and carboxyl­ate groups. A structural comparison suggests that the strong hydrogen bonding affects the neighbouring covalent bond.  相似文献   

16.
In the crystal structure of C15H20O2, mol­ecules are associated by intermolecular hydrogen bonds between the hydroxy function and a keto group [O?O 2.770 (2) Å], forming chains along the [100] direction in the crystal. Both six‐membered rings in the decalin unit adopt envelope conformations; one section of the mol­ecule, encompassing the extended conjugation of a C=C double bond with an enone functionality [C=C—C=O = 175.6 (2)° and C=C—C=C = 176.6 (2)°], is flat, whilst the rest of the mol­ecule is folded relative to the constrained part. The stereochemistry was determined from the R‐(–)‐carvone starting material.  相似文献   

17.
The stereochemistry of the title compound, C20H28O8, a key step in the preparation of analogues of mannostatins, potent inhibitors of α‐mannosidase, has been established. The carboxyl­ic acid group at C1 unexpectedly eclipses the C1—C2 bond. The cyclo­propane ring makes a dihedral angle of 109.4 (2)° with the cyclo­pentene ring.  相似文献   

18.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

19.
The structure of the native pteridine in Tetrahymena pyriformis was determined as (6R)‐5,6,7,8‐tetrahydro‐D ‐monapterin (=(6R)‐2‐amino‐5,6,7,8‐tetrahydro‐6‐[(1R,2R)‐1,2,3‐trihydroxypropyl]pteridin‐4(3H)‐one; 4 ). First, the configuration of the 1,2,3‐trihydroxypropyl side chain was confirmed as D ‐threo by the fluorescence‐detected circular dichroism (FDCD) spectrum of its aromatic pterin derivative 2 obtained by I2 oxidation (Fig. 1). The configuration at the 6‐position of 4 was determined as (R) by comparison of its hexaacetyl derivative 6 with authentic (6R)‐ and (6S)‐hexaacetyl‐5,6,7,8‐tetrahydro‐D ‐monapterins 6 and 7 , respectively, in the HPLC, LC/MS, and LC‐MS/MS (Figs. 36). (6R)‐5,6,7,8‐Tetrahydro‐D ‐monapterin ( 4 ) is a newly discovered natural tetrahydropterin.  相似文献   

20.
Cyclodipepflde (3S, 6S )-bis (phenylmethyl) piperazlne-2,5-dione was prelmred in high yield by heating phenylalanine methyl ester in toluene under reflux. The reduction of this cydodipeptide with sodium NaBH4-BF3 in DIME gave the (2S ,SS)-bis(phenyl-methyl)plperazine, which, on heating with ethylene bromide and triethyiamine, afforded the title compounds. This methodwas proved to be generally applicable to the synthesis of C2-symmetric 2, 5-disubsiituted=l, 4-diazabicyclo [ 2.2.2 ] octanefrom the corresponding natural or unnatural amino acid esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号