首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The relative configuration was determined for the title com­pound, C26H34O6, which was prepared in a synthetic study on immunosuppressant FR­65­814. There is an intra­mol­ecular hydrogen bond between the hydroxy and epoxy groups.  相似文献   

2.
The mol­ecule of the title compound, C16H21NO4, is chiral and has three asymmetric centres. The absolute configuration was not determined via diffraction measurements on the crystal, but was established from the known absolute configuration of the starting material. In the crystal structure, the mol­ecules assemble through inter­molecular hydrogen bonds into a macrostructure with helical channels.  相似文献   

3.
The C atom at the chiral centre of the title compound, C21H20F3NO4, takes an R configuration. From this assignment, useful information on the intermediate process of the reaction was deduced.  相似文献   

4.
The title compound, C25H30NO2+·Cl, has been synthesized, and the crystal structure shows that it is mainly stabilized through inter­molecular N—H·Cl and O—H·Cl and intra­molecular N—H·O hydrogen bonds. The absolute configuration of the new stereogenic center (the C atom adjacent to the N atom on the phenol side) was determined to have an R configuration.  相似文献   

5.
The synthesis, spectroscopic data and X‐ray structural analysis of the title compound, C26H35NO2S, (I), are described. The crystal contains discrete mol­ecules separated by normal van der Waals distances. The benzene­sulfon­amide derivative of the corresponding amine allows the assigment of its relative configuration. The secondary amine has been synthesized via a sequential multi‐step hydro­formyl­ation procedure according to Eilbracht et al. [Chem. Rev. (1999), 99 , 3329–3365].).  相似文献   

6.
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both molecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen‐bond interactions of N—H...O, C—H...Cl and C—H...π types for 2‐[(R)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2‐[(S)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, resulting in the formation of two‐ and three‐dimensional networks.  相似文献   

7.
As part of our interest in the synthesis and catalytic applications of chiral (diphenylphosphanyl)ferrocene ligands, we designed a number of P,N‐containing ligands for use in asymmetric transfer hydrogenation (ATH). During the synthetic procedure to obtain rac‐1‐[(N,4‐dimethylbenzenesulfonamido)methyl]‐2‐(diphenylphosphanyl)ferrocene, the title compound, [Fe(C5H5)(C26H25NO2PS)]0.55·[Fe(C5H5)(C26H25NO3PS)]0.45, was obtained as a by‐product. It is composed of a ferrocene group disubstituted by a partially oxidized diphenylphosphanyl group, as confirmed by 31P NMR analysis, and an (N,4‐dimethylbenzenesulfonamido)methyl substituent. Owing to the partially oxidized diphenylphosphanyl group, it is best to view the crystal as being composed of a mixture of non‐oxidized and oxidized phosphane, so it can be regarded as a cocrystal. It is also a racemate. To the best of our knowledge, the P=O distance [1.344 (4) Å] is the shortest observed for related (diphenylphosphoryl)ferrocene compounds. The packing is stabilized by weak C—H...O interactions, forming R22(10) hydrogen‐bonding motifs, which build up a chain along the c axis.  相似文献   

8.
The title molecular salt, C8H12N+·C26H21O3, contains a dimeric indane pharmacophore that demonstrates potent anti‐inflammatory activity. The indane group of the anion exhibits some disorder about the α‐C atom, which appears common to many structures containing this group. A model to account for the slight disorder was attempted, but this was deemed unsuccessful because applying bond‐length constraints to all the bonds about the α‐C atom led to instability in the refinement. The absolute configuration was determined crystallographically as S,S,S by anomalous dispersion methods with reference to both the Flack parameter and Bayesian statistics on Bijvoet differences. The configuration was also determined by an a priori knowledge of the absolute configuration of the (1S)‐1‐phenylethanaminium counter‐ion. The molecules pack in the crystal structure to form an infinite two‐dimensional hydrogen‐bond network in the (100) plane of the unit cell.  相似文献   

9.
The title isomers, viz. the N‐(3‐methylphenyl)‐, (I), and N‐(2‐methylphenyl)‐, (II), derivatives, both C26H28N2O4S, adopt an E configuration that places the thiophene and trimethoxyphenyl groups on opposite sides of the C=N double bond, providing a suitable orientation for formation of an intramolecular N—H...N hydrogen bond. However, while the molecule in (I) is close to being planar, the N‐methylphenyl group in (II) is twisted significantly from the plane of the remainder of the molecule. Both crystal structures are essentially layered and there are no intermolecular N—H...O hydrogen bonds. Compound (I) has a significantly higher calculated density than (II) (1.340 cf 1.305 Mg m−3), indicating that the molecular packing in the meta isomer is overall more efficient than that in the ortho isomer.  相似文献   

10.
In the title compound, C25H30NO+·Cl, the mol­ecules are linked by a combination of inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds and intra­molecular N—H⋯O hydrogen bonds. The absolute configuration of the new stereogenic centre (the C atom adjacent to the N atom on the phenol side) is determined to have an R configuration.  相似文献   

11.
The title compound, C23H16N4O4, can be considered as consisting of two connected fragments: a nitro­phenyl­hydrazone moiety, which assumes an E configuration, and an isoxazole moiety. In this latter fragment, the weak π‐electron delocalization shortens the carbonyl–isoxazole O?O distance [2.643 (2) Å] to less than the van der Waals radii sum.  相似文献   

12.
The structure of the native pteridine in Tetrahymena pyriformis was determined as (6R)‐5,6,7,8‐tetrahydro‐D ‐monapterin (=(6R)‐2‐amino‐5,6,7,8‐tetrahydro‐6‐[(1R,2R)‐1,2,3‐trihydroxypropyl]pteridin‐4(3H)‐one; 4 ). First, the configuration of the 1,2,3‐trihydroxypropyl side chain was confirmed as D ‐threo by the fluorescence‐detected circular dichroism (FDCD) spectrum of its aromatic pterin derivative 2 obtained by I2 oxidation (Fig. 1). The configuration at the 6‐position of 4 was determined as (R) by comparison of its hexaacetyl derivative 6 with authentic (6R)‐ and (6S)‐hexaacetyl‐5,6,7,8‐tetrahydro‐D ‐monapterins 6 and 7 , respectively, in the HPLC, LC/MS, and LC‐MS/MS (Figs. 36). (6R)‐5,6,7,8‐Tetrahydro‐D ‐monapterin ( 4 ) is a newly discovered natural tetrahydropterin.  相似文献   

13.
In the title compound, C9H12Br2O3, a (tetra­hydro­furan‐2‐yl­idene)acetate, the double bond has the Z form. In the tetra­hydro­furan group, the relative configuration of the Br atom in the 3‐position and the methyl group in the 5‐position is anti. The compound crystallizes with two independent mol­ecules per asymmetric unit and, in the crystal structure, the individual mol­ecules are linked to their symmetry‐equivalent mol­ecules by C—H⋯O hydrogen bonds, so forming centrosymmetric hydrogen‐bonded dimers.  相似文献   

14.
Esterification of a single diastereomer of 2‐(4‐methylene­cyclohex‐2‐enyl)propanol, (II), with (1R,4S)‐(+)‐camphanic acid [(1R,4S)‐4,7,7‐trimethyl‐3‐oxo‐2‐oxabicyclo[2.2.1]heptane‐1‐carboxylic acid] leads to the crystalline title compound, C20H28O4. The relative configuration of the camphanate was determined by X‐ray diffraction analysis. The outcome clarifies the relative and absolute stereochemistry of the naturally occurring bisabolane sesquiterpenes β‐turmerone and β‐sesquiphellandrene, since we have converted (II) into both natural products via a stereospecific route.  相似文献   

15.
The title compound, C16H26O2, (I), prepared by oxidation of (1R*,11R*)‐12‐hydroxy­bi­cyclo­[9.4.1]­hexa­decan‐16‐one using pyridinium dichromate, has a trans configuration of the two fused rings and represents an interesting precursor for the synthesis of macrocyclic structures.  相似文献   

16.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

17.
The salts 3‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium saccharinate, C9H10F4NO+·C7H4NO3S, (1), and 3‐[(2,2,3,3,3‐pentafluoropropoxy)methyl]pyridinium saccharinate, C9H9F5NO+·C7H4NO3S, (2), i.e. saccharinate (or 1,1‐dioxo‐1λ6,2‐benzothiazol‐3‐olate) salts of pyridinium with –CH2OCH2CF2CF2H and –CH2OCH2CF2CF3meta substituents, respectively, were investigated crystallographically in order to compare their fluorine‐related weak interactions in the solid state. Both salts demonstrate a stable synthon formed by the pyridinium cation and the saccharinate anion, in which a seven‐membered ring reveals a double hydrogen‐bonding pattern. The twist between the pyridinium plane and the saccharinate plane in (2) is 21.26 (8)° and that in (1) is 8.03 (6)°. Both salts also show stacks of alternating cation–anion π‐interactions. The layer distances, calculated from the centroid of the saccharinate plane to the neighbouring pyridinium planes, above and below, are 3.406 (2) and 3.517 (2) Å in (1), and 3.409 (3) and 3.458 (3) Å in (2).  相似文献   

18.
The absolute configuration of the title cis‐(1R,3R,4S)‐pyrrolidine–borane complex, C18H34BNO2Si, was confirmed. Together with the related trans isomers (3S,4S) and (3R,4R), it was obtained unexpectedly from the BH3·SMe2 reduction of the corresponding chiral (3R,4R)‐lactam precursor. The phenyl ring is disordered over two conformations in the ratio 0.65:0.35. The crystallographic packing is dominated by the rarely found donor–acceptor hydroxy–borane O—H...H—B hydrogen bonds.  相似文献   

19.
A second polymorphic form (form I) of the previously reported compound {2‐[(2‐hydroxyethyl)iminiomethyl]phenolato‐κO}dioxido{2‐[(2‐oxidoethyl)iminomethyl]phenolato‐κ3O,N,O′}molybdenum(VI) (form II), [Mo(C9H9NO2)O2(C9H11NO2)], is presented. The title structure differs from the previously reported polymorph [Głowiak, Jerzykiewicz, Sobczak & Ziółkowski (2003). Inorg. Chim. Acta, 356 , 387–392] by the fact that the asymmetric unit contains three molecules linked by O—H...O hydrogen bonds. These trimeric units are further linked through O—H...O hydrogen bonds to form a chain parallel to the [11] direction. As in the previous polymorph, each molecule is built up from an MoO22+ cation surrounded by an O,N,O′‐tridentate ligand (OC6H4CH=NCH2CH2O) and weakly coordinated by a second zwitterionic ligand (OC6H4CH=N+HC2H4OH). All complexes are chiral with the absolute configuration at Mo being C or A. The main difference between the two polymorphs results from the alternation of the chirality at Mo within the chain.  相似文献   

20.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号