首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.  相似文献   

2.
Hybrid nanoparticles (HNPs) with zinc oxide and polymethyl metha acrylate (inorganic/ polymer) were synthesized through the exploitation of ultrasound approach. The synthesized HNPs were further characterized employing transmission electron microscopy and x-ray diffraction. ZnO-PMMA based HNPs exhibit excellent protection properties to mild steel from corrosion when gets exposed to acidic condition. Electrochemical impendence spectroscopy (EIS) analysis was accomplished to evaluate the corrosion inhibition performance of MS panel coated with 2 wt% or 4 wt% of HNPs and its comparison with bare panel and that of loaded with only standard epoxy coating., Tafel plot and Nyquist plot analysis depicted that the corrosion current density (Icorr) decreases from 16.7 A/m2 for bare material to 0.103 A/m2 for 4% coating of HNPs. Applied potential (Ecorr) values shifted from negative to positive side. These results were further supported by qualitative analysis. The images taken over a period of time indicated the increase in lifetime of MS panel from 2 to 3 days for bare panel to 10 days for HNPs coated panel, showing that ZnO-PMMA HNPs have potential application in metal protection from corrosion by forming a passive layer.  相似文献   

3.
The aim of this work is to study the effects of duty ratio on the growth mechanism of the ceramic coatings on Ti-6Al-4V alloy prepared by pulsed single-polar MPO at 50 Hz in NaAlO2 solution. The phase composition of the coatings was studied by X-ray diffraction, and the morphology and the element distribution in the coating were examined through scanning electron microscopy and energy dispersive spectroscopy. The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance of the coated samples was examined by linear sweep voltammetry technique in 3.5% NaCl solution. The changes of the duty ratio (D) of the anode process led to the changes of the mode of the spark discharge during the pulsed single-polar MPO process, which further influenced the structure and the morphology of the ceramic coatings. The coatings prepared at D = 10% were composed of a large amount of Al2TiO5 and a little γ-Al2O3 while the coatings prepared at D = 45% were mainly composed of α-Al2O3 and γ-Al2O3. The coating thickness and the roughness were both increased with the increasing D due to the formation of Al2O3. The formation of Al2TiO5 resulted from the spark discharge due to the breakdown of the oxide film, while the formation of Al2O3 resulted from the spark discharge due to the breakdown of the vapor envelope. The ceramic coatings improved the corrosion resistance of Ti-6Al-4V alloy. And the surface morphology and the coating thickness determined the corrosion resistance of the coated samples prepared at D = 45% was better than that of the coated samples prepared at D = 10%.  相似文献   

4.
Ti-6Al-4V alloy was treated with various concentrations (5 wt.%, 15 wt.% and 25 wt.%) of hydrogen peroxide (H2O2) and then heat treated to produce an anatase titania layer. The surface modified substrates were immersed in simulated body fluid (SBF) solution for the growth of an apatite layer on the surface and the formed apatite layer was characterized using various surface characterization techniques. The results revealed that titania layer with anatase nature was observed for all H2O2 treated Ti-6Al-4V alloy, irrespective of the H2O2 concentrations. Ti-6Al-4V alloy treated with 15 wt.% and 25 wt.% of H2O2 induced apatite formation, however 5 wt.% of H2O2 treated Ti-6Al-4V failed to form apatite layer on the surface. The electrochemical behaviour of H2O2 treated specimens in SBF solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy. Ti-6Al-4V alloy treated with 25 wt.% of H2O2 solution exhibited low current density and high charge transfer resistance values compared to specimens treated with other concentrations of H2O2 and untreated Ti-6Al-4V alloy.  相似文献   

5.
A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a 300 (F capacitor, was applied to atomized spherical Ti-6Al-4V powder in air to produce microporous compact. A solid core surrounded by a porous layer was self-assembled by a discharge in the middle of the compact. X-ray photoelectron spectroscopy was used to study the surface characteristics of the compact material. C, N, O and Ti were the main constituents, with smaller amounts of Al and V. The surface was lightly oxidized and was primarily in the form of TiO2. A lightly etched EDS sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V compact surface also contained small amounts of TiN in addition to TiO2, resulting in the reaction between nitrogen in air and the Ti substrate in times as short as 125 μs.  相似文献   

6.
A single electro-discharge-sintering (EDS) pulse (0.7-2.0 kJ/0.7 g), from a 300 μF capacitor, was applied to atomized spherical Ti-6Al-4V powder in a vacuum to produce a porous-surfaced implant compact. A solid core surrounded by a porous layer was formed by a discharge in the middle of the compact. X-ray photoelectron spectroscopy was used to study the surface characteristics of the implant material. C, O, and Ti were the main constituents, with smaller amounts of Al, V, and N. The implant surface was lightly oxidized and was primarily in the form of TiO2 with a small amount of metallic Ti. A lightly etched EDS implant sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V implant surface also contained small amounts of aluminum oxide in addition to TiO2. However, V detected in the EDS Ti-6Al-4V implant surface did not contribute to the formation of the oxide film. The small amount of N in the implant surface resulted from nitride material that was also found in the as-received Ti-6Al-4V powders.  相似文献   

7.
The aim of this work was to study the growth characteristics of micro-plasma oxidation ceramic coatings on Ti-6Al-4V alloy. Compound ceramic coatings were prepared on Ti-6Al-4V alloy by pulsed micro-plasma oxidation (MPO) in NaAlO2 solution. The phase composition and surface morphology of the coating were investigated by X-ray diffractometry and scanning electron microscopy. The solution of Ti from the substrate and the content of Al in the electrolyte were studied by inductively coupled plasma-atomic emission spectrometer (ICP-AES) technique. Ti from the substrate dissolved and came into the coating and the electrolyte during MPO process. The content of Ti in the electrolyte under the pulsed bi-polar mode was more than that of the pulsed single-polar mode. The phase composition and structure of the coating was attributable to the space steric hindrance of Al congregated on the electrode surface due to the effect of the electric field and the electrolyte characters. For the pulsed single-polar mode, the coating was mainly composed of a large amount of α-Al2O3 and a small amount of γ-Al2O3. And the coating was mainly structured by Al from the electrolyte. However, the coating was composed of a large amount of Al2TiO5 and a little α-Al2O3 and rutile TiO2 for the pulsed bi-polar mode. And the coating was structured both by Ti from the substrate and Al from the electrolyte.  相似文献   

8.
Magnesium (Mg) coated with four kinds of polymers, poly (l-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (?-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.  相似文献   

9.
Titanium alloys are very attractive materials because they have high specific strength, excellent corrosion and erosion resistance in many active environments. However, their low hardness values and poor tribological properties require improvement of their surface properties. The present study is concerned with the fabrication of Zr and Zr-N alloying layers in the surfaces of Ti-6Al-4V substrates by plasma surface alloying technique. The microstructure, chemical composition and hardness of the surface alloying layers were analyzed to understand the mechanisms of surface alloying and hardness improvement. The Zr and Zr-N surface alloying layers formed were homogeneous and compact, in which the surface alloying elements all displayed gradient distributions. The Zr and Zr-N surface alloying layers all enhanced the surface hardness of Ti-6Al-4V alloy. Zr-N surface alloying resulted in greater improvement in hardness and the maximum microhardness of (1.37 ± 0.04) × 103 HK was obtained at the subsurface, which was much higher than that of the untreated Ti-6Al-4V alloy. The Zr-N surface alloying layer consisted of an outer nitride layer and an inner diffusion zone of Zr and N, and its very high hardness owed to the formation of the nitride layer. The mechanism of hardness improvement of Zr surface alloyed Ti-6Al-4V alloy was solid solution strengthening.  相似文献   

10.
The laser clad coating technique can help to produce metallurgical bonding with high bonding strength between the coating layer and the substrate, which has been gradually applied for hydroxyapatite (HA) coating on metallic substrates. In this study, HA powder is mixed with two different binders, namely water glass (WG) and polyvinyl alcohol (PVA), respectively, and is then clad on Ti-6Al-4V substrates using an Nd:YAG laser system under various processing conditions. The microstructure, chemical composition and hardness of the coating layer and transition layer of the various samples are then systematically explored. The experimental results show that the coating layers of the various samples all contain both cellular dendrites and rod-like piled structures, while the transition layers contain only cellular dendrites. For all samples, the coating layer consists mostly of CaTiO3, Ca2P2O7, CaO and HA phases, whereas the transition layer contains primarily CaTiO3, Ca2P2O7, Ti3P, Ti and HA phases. In addition, the transition layer of the WG samples also contains SiO2 and Si2Ti phases. In all of the specimens, the transition layer has a higher average hardness than the substrate or coating layer. Moreover, the transition layer in the WG sample is harder than that in the PVA sample.  相似文献   

11.
In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF2), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (Ecorr) of −1.60 V and a corrosion current density (Icorr) of 0.17 μA/cm2, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm2 for the Ti-O coated sample and 0.42 kΩ cm2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.  相似文献   

12.
Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO2 is introduced into the as-deposited coating mainly composed of MgO and Mg2SiO4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.  相似文献   

13.
Calcium phosphate coatings deposited on titanium alloy are intended to add a bioactive surface to medical implants. This work presents the characterisation of the interface between Ti-6Al-4V and a crystalline calcium phosphate coating obtained by pulsed laser deposition, with a KrF excimer laser, at 575 °C and under a 45 Pa water-vapour atmosphere. The coating–substrate system was studied by secondary-ion mass spectrometry, scanning electron microscopy, X-ray diffractometry, Raman spectroscopy and X-ray photoelectron spectroscopy. The results show that the deposition process promotes the interdiffusion of substrate elements into the coating and coating elements into the substrate oxide layer. Thus, a graded layer of mixed calcium phosphate and amorphous titanium oxide is formed. For the substrate, a hydroxyapatite coating acts more as a barrier for oxygen incoming from a gas than as an oxygen source during deposition. Moreover, oxygen diffusion into the substrate occurs. Thus, the content of oxygen of this oxide layer diminishes with depth. When the oxygen concentration is low enough it is incorporated in solid solution in the titanium alloy . PACS 81.15.Fg; 68.55.-a; 87.68.+z  相似文献   

14.
The effect of Al on the electrochemical corrosion behaviour of Pb-free Sn-8.5 Zn-0.5 Ag-XAl-0.5 Ga solder in 3.5% NaCl solution was investigated by using potentiodynamic polarization techniques. The X content in the solder varied from 0.1 to 3 wt.%. Polarization studies revealed that an increase in Al content upto 1.5 wt.% decreased the corrosion current density (Icorr), corrosion rate of the solder and shifted the corrosion potential (Ecorr) towards more noble values. However, higher content of Al, i.e. 3 (wt.%) in the five-element solder enhanced the corrosion rate and resulted in a significant increase in the Ecorr towards more negative values. Passivation behaviour was noticed in all the solders having varying Al content, but the passive film formed at 1.5 wt.% Al was most stable due to its low passivation current density (ip) and low critical current density (icc) value in comparison to the other solders. XPS and Auger depth profile results revealed that the passive film consisted of oxides/hydroxides of Al and Zn formed on the surface of the solder with Sn being formed in the subsequent layer. Considerable aluminium segregation occurred towards the surface principally as Al2O3/Al(OH)3 with increase in Al content to 1.5 wt.% in the five element solder. The formation of Al2O3 seemed to prevent the oxidation of zinc on the surface of the solder.  相似文献   

15.
Rough and porous Al2O3 coatings containing Ca and P were prepared on Ti–50.8 at.% Ni alloy by micro-arc oxidation (MAO) technique. The microstructure, elemental and phase composition of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS) and thin-film X-ray diffraction (TF-XRD). The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance and the nickel release of the coated and uncoated samples were examined by potentiodynamic polarization tests and immersion tests in Hank’s solution, respectively. The results show that the coatings are mainly composed of γ-Al2O3 crystal phase. The Ni content of the coatings is about 3.5 at.%, which is greatly lower than that of NiTi substrate. With increasing treatment time, both thickness and roughness of the coatings increase. The corrosion resistance of the coated samples is about two orders of magnitude higher than that of the uncoated NiTi alloy. The concentration of Ni released from coated NiTi samples is much lower than that of uncoated NiTi sample. It can be reduced in the factor of one-seventh compared with the uncoated NiTi sample after 3 weeks immersion in Hank’s solution.  相似文献   

16.
Ta-N thin films were deposited on AISI 317L stainless steel (SS) substrates by cathodic arc deposition (CAD) at substrate biases of −50 and −200 V. The as-deposited films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The results show that stoichiometric TaN with hexagonal lattice (3 0 0) preferred orientation was achieved at the bias of −200 V. On the other hand, Ta-rich Ta-N thin film deposited at −50 V shows amorphous nature. According to the XPS result, Ta element in the films surface exist in bonded state, including the Ta-N bonds characterized by the doublet (Ta 4f7/2 = 23.7 eV and Ta 4f5/2 = 25.7 eV). Electrochemical properties of the Ta-N coated stainless steel systems were investigated using potentiodynamic polarization and electrochemical impedance spectroscope (EIS) in Hank's solution at 37 °C. For the Ta-N coated samples, the corrosion current (icorr) is two or three orders of magnitude lower than that of the uncoated ones, indicating a significantly improved corrosion resistance. Growth defects in the Ta-N thin films produced by CAD, however, play a key role in the corrosion process, especially the localised corrosion. Using the polarization fitting and the EIS modelling, we compared the polarization resistance (Rp) and the porosity (P) of the Ta-N coatings deposited at different biases. It seems that Ta-N film with comparatively lower bias (−50 V) shows better corrosion behavior in artifical physiological solution. That may be attributed to the effect of ion bombarding, which can be modulated by the substrate bias.  相似文献   

17.
When the Ti-6Al-4V alloy is overaged at 500-600°C, nanometer-sized α2 (Ti3Al) particles can be homogeneously precipitated inside a phases, thereby leading to strength improvement. Widmanstätten and equiaxed microstructures containing fine α2 (Ti3Al) particles were obtained by overaging the Ti-6Al-4V alloy. Precipitation of α2 (Ti3Al) particles was monitored using thermoelectric power measurements for different aging conditions in the Ti-6Al-4V alloy. Overaging heat treatments were conducted at 515, 545 and 575°C for different aging times. In addition, overaging samples were examined by optical microscopy, scanning electron microscopy and hardness measurements. It was found that the thermoelectric power is very sensitive to the aging process in the two studied Ti-6Al-4V structures.  相似文献   

18.
《Current Applied Physics》2009,9(5):1067-1071
Ceramic coating was achieved on Q235 carbon steel by PEO (plasma electrolytic oxidation, PEO) without any pretreatment in sodium aluminate system. The discharge process as well as the accompanied surface morphology evolution was analyzed. The phase and elemental composition of the coatings were also investigated. The corrosion, mechanical and tribological properties of the ceramic coating were primarily studied. It is found that the coating surface was porous and the thickness of the coating was about 120 μm. The coating mainly consisted of FeAl2O4, Fe3O4 and a little γ-A12O3. The corrosion current of the coated sample was 3.082 × 10−7 A/cm2, which was decreased by two orders of magnitude compared with the uncoated one. The micro hardness of the ceramic coating was 1210 Hv, which was about three times as that of the uncoated sample. The friction coefficient of coated sample was also well improved. Investigations revealed that PEO provided a promising technique for preparation of protective ceramic coatings on steels.  相似文献   

19.
In this work, novel zirconium incorporated Ca-Si based ceramic powder Ca3ZrSi2O9 was synthesized. The aim of this study was to fabricate Ca3ZrSi2O9 coating onto Ti-6Al-4V substrate using atmospheric plasma-spraying technology and to evaluate its potential applications in the fields of orthopedics and dentistry. The phase composition, surface morphologies of the coating were examined by XRD and SEM, which revealed that the Ca3ZrSi2O9 coating was composed of grains around 100 nm and amorphous phases. The bonding strength between the coating and the substrate was 28 ± 4 MPa, which is higher than that of traditional HA coating. The dissolution rate of the coating was assessed by monitoring the ions release and mass loss after immersion in the Tris-HCl buffer solution. The in vitro bioactivity of the coating was determined by observing the formation of apatite on its surface in simulated body fluids. It was found that the Ca3ZrSi2O9 coating possessed both excellent chemical stability and good apatite-formation ability, suggesting its potential use as bone implants.  相似文献   

20.
激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究   总被引:6,自引:0,他引:6  
孙荣禄  杨贤金 《光学技术》2006,32(2):287-289
采用激光熔覆技术在TC4合金表面上制备了TiC陶瓷涂层,分析了熔覆层的微观组织,测试了熔覆层的硬度和摩擦磨损性能。结果表明:TiC激光熔覆层分为熔覆区和稀释区两个区域,熔覆区未受到基底的稀释,由TiC颗粒和TiC树枝晶组成;稀释区受到了基底的稀释,由TiC树枝晶和钛合金组成;TiC激光熔覆层的显微硬度在HV700~1500之间,明显地改善了TC4合金表面的摩擦和磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号