首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Optimization》2012,61(8):1247-1258
In this article, the standard primal and dual linear semi-infinite programming (DLSIP) problems are reformulated as linear programming (LP) problems over cones. Therefore, the dual formulation via the minimal cone approach, which results in zero duality gap for the primal–dual pair for LP problems over cones, can be applied to linear semi-infinite programming (LSIP) problems. Results on the geometry of the set of the feasible solutions for the primal LSIP problem and the optimality criteria for the DLSIP problem are also discussed.  相似文献   

2.
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points depend on the index of the Hessian matrix of the total cost function. The global and local extrema of the nonconvex quadratic function can be identified by the triality theory [11]. Results show that if the global extrema of the nonconvex quadratic function are located on the boundary of the primal feasible space, the dual solutions should be interior points of the dual feasible set, which can be solved by deterministic methods. Certain nonconvex quadratic programming problems in {\open {R}}^{n} can be converted into a dual problem with only one variable. It turns out that a complete set of solutions for quadratic programming over a sphere is obtained as a by-product. Several examples are illustrated.  相似文献   

3.
In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends on the size/shape of the ellipsoidal data uncertainty set. Next, we prove that, under suitable constraint qualifications, the reformulation has zero duality gap with its dual problem, even when the primal problem itself is infeasible. The dual problem is equivalent to minimizing a smooth objective function over the Cartesian product of second-order cones and the Euclidean space, which is easy to project onto. Thus, we propose a simple variant of the spectral projected gradient method (Birgin et al. in SIAM J. Optim. 10:1196–1211, 2000) to solve the dual problem. While it is well-known that any accumulation point of the sequence generated from the algorithm is a dual optimal solution, we show in addition that the dual objective value along the sequence generated converges to a finite value if and only if the primal problem is feasible, again under suitable constraint qualifications. This latter fact leads to a simple certificate for primal infeasibility in situations when the primal feasible set lies in a known compact set. As an application, we consider robust correlation stress testing where data uncertainty arises due to untimely recording of portfolio holdings. In our computational experiments on this particular application, our algorithm performs reasonably well on medium-sized problems for real data when finding the optimal solution (if exists) or identifying primal infeasibility, and usually outperforms the standard interior-point solver SDPT3 in terms of CPU time.  相似文献   

4.
This paper presents a variant of Karmarkar's linear programming algorithm that works directly with problems expressed in standard form and requires no a priori knowledge of the optimal objective function value. Rather, it uses a variation on Todd and Burrell's approach to compute ever better bounds on the optimal value, and it can be run as a prima-dual algorithm that produces sequences of primal and dual feasible solutions whose objective function values convege to this value. The only restrictive assumption is that the feasible region is bounded with a nonempty interior; compactness of the feasible region can be relaxed to compactness of the (nonempty) set of optimal solutions.  相似文献   

5.
It is well known that for symmetric linear programming there exists a strictly complementary solution if the primal and the dual problems are both feasible. However, this is not necessary true for symmetric or general semide finite programming even if both the primal problem and its dual problem are strictly feasible. Some other properties are also concerned.  相似文献   

6.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition, that eliminates the need for using the Benders or Dantzig-Wolfe master problems. As input to the dual subproblem the average of a part of all known dual solutions of the primal subproblem is used, and as input to the primal subproblem the average of a part of all known primal solutions of the dual subproblem. In this paper we study the lower bounds on the optimal objective function value of (linear) pure integer programming problems obtainable by the application of mean value cross decomposition, and find that this approach can be used to get lower bounds ranging from the bound obtained by the LP-relaxation to the bound obtained by the Lagrangean dual. We examplify by applying the technique to the clustering problem and give some preliminary computational results.  相似文献   

7.
《Optimization》2012,61(5):683-690
Our paper presents a new Criss-Cross method for solving linear programming problems. Starting from a neither primal nor dual feasible solution, we reach an optimal solution in finite number of steps if it exists. If there is no optimal solution, then we show that there is not primal feasible or dual feasible solution, We prove the finiteness of this procedure. Our procedure is not the same as the primal or dual simplex method if we have a primal or dual feasible solution, so we have constructed a quite new procedure for solving linear programming problems.  相似文献   

8.
A dual perturbation view of linear programming   总被引:2,自引:0,他引:2  
Solving standard-form linear prograrns via perturbation of the primal objective function has received much attention recently. In this paper, we investigate a new perturbation scheme which obtains a dual optimal solution by perturbing the dual feasible domain under different norms. A dual-to-primal conversion formula is also provided. We show that this new perturbation scheme actually generalizes the primal entropic perturbation approach to linear programming.Partially sponsored by the North Carolina Supercomputing Center 1994 Cray Research Grant and the National Textile Center Research Grant.  相似文献   

9.
In this paper, we consider the following minimax linear programming problem: min z = max1 ≤ jn{CjXj}, subject to Ax = g, x ≥ 0. It is well known that this problem can be transformed into a linear program by introducing n additional constraints. We note that these additional constraints can be considered implicitly by treating them as parametric upper bounds. Based on this approach we develop two algorithms: a parametric algorithm and a primal—dual algorithm. The parametric algorithm solves a linear programming problem with parametric upper bounds and the primal—dual algorithm solves a sequence of related dual feasible linear programming problems. Computation results are also presented, which indicate that both the algorithms are substantially faster than the simplex algorithm applied to the enlarged linear programming problem.  相似文献   

10.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

11.
The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. It is proved that the primal path converges to the analytic center of the primal optimal set with respect to the entropy function, the dual path converges to a point in the dual optimal set and the primal-dual path associated to this paths converges to a point in the primal-dual optimal set. As an application, the generalized proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered. The convergence of the primal proximal sequence to the analytic center of the primal optimal set with respect to the entropy function is established and the convergence of a particular weighted dual proximal sequence to a point in the dual optimal set is obtained.  相似文献   

12.
This paper is focused on the stability of the optimal value, and its immediate repercussion on the stability of the optimal set, for a general parametric family of linear optimization problems in n. In our approach, the parameter ranges over an arbitrary metric space, and each parameter determines directly a set of coefficient vectors describing the linear system of constraints. Thus, systems associated with different parameters are not required to have the same number (cardinality) of inequalities. In this way, discretization techniques for solving a nominal linear semi-infinite optimization problem may be modeled in terms of suitable parametrized problems. The stability results given in the paper are applied to the stability analysis of the Lagrangian dual associated with a parametric family of nonlinear programming problems. This dual problem is translated into a linear (semi-infinite) programming problem and, then, we prove that the lower semicontinuity of the corresponding feasible set mapping, the continuity of the optimal value function, and the upper semicontinuity of the optimal set mapping are satisfied. Then, the paper shows how these stability properties for the dual problem entail a nice behavior of parametric approximation and discretization strategies (in which an ordinary linear programming problem may be considered in each step). This approximation–discretization process is formalized by means of considering a double parameter: the original one and the finite subset of indices (grid) itself. Finally, the convex case is analyzed, showing that the referred process also allows us to approach the primal problem.Mathematics Subject Classifications (2000) Primary 90C34, 90C31; secondary 90C25, 90C05.  相似文献   

13.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

14.
In exact arithmetic, the simplex method applied to a particular linear programming problem instance with real data either shows that it is infeasible, shows that its dual is infeasible, or generates optimal solutions to both problems. Most interior-point methods, on the other hand, do not provide such clear-cut information. If the primal and dual problems have bounded nonempty sets of optimal solutions, they usually generate a sequence of primal or primaldual iterates that approach feasibility and optimality. But if the primal or dual instance is infeasible, most methods give less precise diagnostics. There are methods with finite convergence to an exact solution even with real data. Unfortunately, bounds on the required number of iterations for such methods applied to instances with real data are very hard to calculate and often quite large. Our concern is with obtaining information from inexact solutions after a moderate number of iterations. We provide general tools (extensions of the Farkas lemma) for concluding that a problem or its dual is likely (in a certain well-defined sense) to be infeasible, and apply them to develop stopping rules for a homogeneous self-dual algorithm and for a generic infeasible-interior-point method for linear programming. These rules allow precise conclusions to be drawn about the linear programming problem and its dual: either near-optimal solutions are produced, or we obtain certificates that all optimal solutions, or all feasible solutions to the primal or dual, must have large norm. Our rules thus allow more definitive interpretation of the output of such an algorithm than previous termination criteria. We give bounds on the number of iterations required before these rules apply. Our tools may also be useful for other iterative methods for linear programming. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

15.
The geometric duality theory of Heyde and Löhne (2006) defines a dual to a multiple objective linear programme (MOLP). In objective space, the primal problem can be solved by Benson’s outer approximation method (Benson 1998a,b) while the dual problem can be solved by a dual variant of Benson’s algorithm (Ehrgott et al. 2007). Duality theory then assures that it is possible to find the (weakly) nondominated set of the primal MOLP by solving its dual. In this paper, we propose an algorithm to solve the dual MOLP approximately but within specified tolerance. This approximate solution set can be used to calculate an approximation of the weakly nondominated set of the primal. We show that this set is a weakly ε-nondominated set of the original primal MOLP and provide numerical evidence that this approach can be faster than solving the primal MOLP approximately.  相似文献   

16.
Recently, Luc defined a dual program for a multiple objective linear program. The dual problem is also a multiple objective linear problem and the weak duality and strong duality theorems for these primal and dual problems have been established. Here, we use these results to prove some relationships between multiple objective linear primal and dual problems. We extend the available results on single objective linear primal and dual problems to multiple objective linear primal and dual problems. Complementary slackness conditions for efficient solutions, and conditions for the existence of weakly efficient solution sets and existence of strictly primal and dual feasible points are established. We show that primal-dual (weakly) efficient solutions satisfying strictly complementary conditions exist. Furthermore, we consider Isermann’s and Kolumban’s dual problems and establish conditions for the existence of strictly primal and dual feasible points. We show the existence of primal-dual feasible points satisfying strictly complementary conditions for Isermann’s dual problem. Also, we give an alternative proof to establish necessary conditions for weakly efficient solutions of multiple objective programs, assuming the Kuhn–Tucker (KT) constraint qualification. We also provide a new condition to ensure the KT constraint qualification.  相似文献   

17.
So-called optimum-degeneracy graphs describe the structure of the set of primal and dual feasible bases associated with a degenerate vertex of the feasible solution set of a linear program. The structural properties of these graphs play an important role in determining shadow prices or performing sensitivity analysis in linear programming under degeneracy. We prove that general optimum-degeneracy graphs are connected and that negative optimum-degeneracy graphs are connected under certain conditions.  相似文献   

18.
A numerical algorithm based on parametric approach is proposed in this paper to solve a class of continuous-time linear fractional max-min programming problems. We shall transform this original problem into a continuous-time non-fractional programming problem, which unfortunately happens to be a continuous-time nonlinear programming problem. In order to tackle this nonlinear problem, we propose the auxiliary problem that will be formulated as a parametric continuous-time linear programming problem. We also introduce a dual problem of this parametric continuous-time linear programming problem in which the weak duality theorem also holds true. We introduce the discrete approximation method to solve the primal and dual pair of parametric continuous-time linear programming problems by using the recurrence method. Finally, we provide two numerical examples to demonstrate the usefulness of this algorithm.  相似文献   

19.
In this paper we list several useful properties of central points in linear programming problems. We study the logarithmic barrier function, the analytic center and the central path, relating the proximity measures and scaled Euclidean distances defined for the primal and primal–dual problems. We study the Newton centering steps, and show how large the short steps used in path following algorithms can actually be, and what variation can be ensured for the barrier function in each iteration of such methods. We relate the primal and primal–dual Newton centering steps and propose a primal-only path following algorithm for linear programming.  相似文献   

20.
In this paper, we present an original method to solve convex bilevel programming problems in an optimistic approach. Both upper and lower level objective functions are convex and the feasible region is a polyhedron. The enumeration sequential linear programming algorithm uses primal and dual monotonicity properties of the primal and dual lower level objective functions and constraints within an enumeration frame work. New optimality conditions are given, expressed in terms of tightness of the constraints of lower level problem. These optimality conditions are used at each step of our algorithm to compute an improving rational solution within some indexes of lower level primal-dual variables and monotonicity networks as well. Some preliminary computational results are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号