首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Chromium doping effects on the structure and the magnetic properties of bismuth ferrite BiFe1-xCrxO3 (x = 0-0.3) (BFCxO) polycrystalline samples are examined. The Perovskite-type oxide samples are synthesized by the conventional solid state reaction at a high pressure of 7 GPa and a temperature of 1273 K. The X-ray powder diffraction patterns at room temperature show that all the samples with x = 0.0-0.3 are described by the rhombohedral structure. In the meantime, it is revealed that the doping of Cr can induce noticeable lattice distortions in the doping samples, and the largest distortion is observed in the case x = 0.1. The magnetic hysteresis loops measured at room temperature exhibit week ferromagnetic behaviors of the samples and the magnetization is found to increase with the increase in Cr concentration. The temperature- dependent magnetization curves indicate antiferromagnetic features in samples. Moreover, Cr-doping tends to reduce the ordering temperature.  相似文献   

2.
Single phase of Fe3+-doped α-Ga2-xFexO3(α-GF x O, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-x Fe x O3(β-GF x O) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe3+content. Calorimetric measurements show that the temperature of the phase transition from α-GF x O to β-GF x O increases, while the associated enthalpy change decreases upon increasing Fe3+content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe3+ions is antiferromagnetic. Remnant magnetization is observed in the Fe3+-doped α-GF x O and is attributed to the spin glass in the magnetic sublattice. At high Fe3+doping level(x = 0.4), two evident peaks are observed in the image part of the AC susceptibility χ ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α-GF0.4O is suggested to be the behavior of two spin glasses.  相似文献   

3.
We study both the two-particle and single-particle fringe visibility in the generalized version of the Nakazato–Pascazio model where two qubits interact with a finite length one-dimensional array.Both the two-particle and single-particle fringe visibilities are investigated with different initial states of the particles spin.For different initial states of the particles spin,the two-particle fringe visibility either decreases or increases over time,and may even decrease first and increase later.Due to the interaction between the particles and the one-dimensional array,the single-particle fringe visibility increases over time when the initial state of the two particles spin is independent.The single-particle fringe visibility is equal to 0 as the two-particle spin is initially in the completely entangled state or in the singlet state.  相似文献   

4.
Electrical transport and thermoelectric properties of Ni-doped YCo1-xNixO3 (0 ≤ x ≤ 0.07), prepared by using the sol-gel process, are investigated in a temperature range from 100 to 780 K. The results show that with the increase of Ni doping content, the values of DC resistivity of YCo1-xNixO3 decrease, but carrier concentration increases. The temperature dependences of the resistivity for YCo1-xNixO3 are found to follow a relation of ln ρ∝ 1/T in a low-temperature range (LTR) (T ~ 304 K for x = 0; ~ 230 K T ~ 500 K for x = 0.02, 0.05, and 0.07) and high-temperature range (HTR) (T ~ 655 K for all compounds), respectively. The estimated apparent activation energies for conduction E a1 in LRT and Ea2 in HTR are both found to decrease monotonically with doping content increasing. At very low temperatures (T ~230 K), Mott's law is observed for YCo1-xNixO3 (x ≥ 0.02), indicating that considerable localized states form in the heavy doping compounds. Although the Seebeck coefficient of the compound decreases after Ni doping, the power factor of YCo1-xNixO3 is enhanced remarkably in a temperature range from 300 to 740 K, i.e., a 6-fold increase is achieved at 500 K for YCo0.98Ni0.02O3 , indicating that the high-temperature thermoelectric property of YCoO3 can be improved by partial substitution of Ni for Co.  相似文献   

5.
谢尊  马庆敏  王静  刘英  李有成 《中国物理》2007,16(12):3637-3641
The structural stability and magnetic properties of the icosahedral Ni13, Ni13^+1 and Ni13^-1 clusters have been obtained by utilizing all-electron density functional theory with the generalized gradient approximations for the exchange-correlation energy. The calculated results show that the ground states of neutral and charged clusters all favour a D3d structure, a distorted icosahedron, due to the Jahn-Teller effect. The radial distortions caused by doping one electron and by doping one hole are opposite to each other. Doping one electron will result in a 1/2 decrease and doping one hole will result in a 1/2 increase of the total spin. Both increasing interatomic spacing and decreasing coordination will lead to an enhancement of the spin magnetic moments for Nil3 clusters.  相似文献   

6.
The effects of Ce-doping on the phase transition of the orbital/spin ordering (OO/SO) are studied through the structural, magnetic, and electrical transport measurements of perovskite vanadate Sm1 x Ce x VO 3 . The measurements of structure show that the cell volume decreases as x≤ 0.05, and then increases as Ce-doping level increases further. The OO state exists but is suppressed progressively in the sample with x≤0.2 and disappears as x0.2. The temperature at which the C-type SO transition is present increases monotonically with Ce-doping level increasing. The temperature dependence of resistivity for each of the samples shows a semiconducting transport behavior and the transport can be well described by the thermal activation model. The activation energy first decreases as x ≤0.2, and then increases for further doping. The obtained results are discussed in terms of the mixed-valent state of the doped-Ce ions.  相似文献   

7.
The structural and magnetic properties of SmFeO3 with B site substitution of non-magnetic atom A1 are investigated. The x-ray diffraction patterns show that SmFe(1-x)AlxO3 remains an orthorhombic structure within the whole doping range, and the unit-cell volume decreases monotonically with the increase of doped A1 concentration. Besides, the octa- hedral tilting distortions of FeO6 are found to be alleviated while the tolerance factor increases. However, the relationship between the lattice parameters and Al concentration is observed to deviate from Vegard's rule, and this may be caused by magnetostriction effects. For the doping content values in a range 0 〈 x 〈 0.6, the ferromagnetism, antiferromagnetism, and paramagnetism are observed to occur continuously. Moreover, the magnetization and the spin reorientation temperature (Tk) decrease monotonically as Al content value increases. With the doping content values being x = 0.8 and 1.0, these compounds only show paramagnetic behavior.  相似文献   

8.
Magnetic properties of spin-ladder compounds Sr14(Cu1-yFey)24O41 (0 ≤ y ≤ 0.05) are investigated in the temperature range from 10 to 300 K. The result reveals that all the samples exhibit magnetic crossover behavior in the paramagnetic range, and Fe^3+ doping can efficiently increase the susceptibility due to the large moment of Fe^3+. Both the observations are consistent with our previous investigation on transport behaviors, indicating the strong correlation between the magnetism and transport behaviors. The spin gap is evidenced in all the samples, and strengthens as Fe^3+ doping level increases, which can be associated with the antiferromagnetic interaction between Fe^3+ and Cu cations.  相似文献   

9.
Yttrium iron garnet powder samples((3-x)Dy_x Fe_5O_(12)), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the prepared samples are examined by different methods such as x-ray diffraction(XRD), Mssbauer spectroscopy, macroscopic magnetization measurements, and thermal measurements. The XRD measurements show that all the samples reveal the presence of a single garnet phase with a BCC structure. Room temperature Mssbauer spectra indicate that iron ions occupy three magnetic sites, i.e., two octahedral sites and one tetrahedral site. The saturation magnetization and the initial magnetic susceptibility decrease with the increase of Dy~(3+) substitution. The Curie temperature obtained from the thermal measurements seems to be independent of Dy~(3+) substitution.  相似文献   

10.
Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fel-xCox)11.9Si1.1 (x=0.04, 0.06, and 0.08) with Curie temperatures of 243 K, 274 K, and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below Tc, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above Tc. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above Tc, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state.  相似文献   

11.
周登  张澄 《中国物理快报》2002,19(2):227-229
The principle of the minimum energy dissipation rate is applied to toroidal plasmas with a coaxial direct current helicity injection.The relaxed states are analysed based on the analytical solutions of the resulting Euler-Lagrangian equations.Three typical states are found.The relaxed states are close to the Taylor state if the ratio of current density to magnetic field on the boundary is small enough.The states will deviate from the Taylor state when the ratio increases,but when it approaches a critical value the central part of relaxed plasmas may approach a force free state,and above the critical value both current and magnetic field may reverse in the central part.  相似文献   

12.
The thermal entanglement in the spin-S Heisenberg XYZ model is studied in detail by using the entanglement measure of negativity. The effects of spin on the thermal entanglement, the threshold temperature, the critical uniform external magnetic field, the nonuniform external magnetic field and the', entanglement extremum are discussed, respectively. It is shown that with increasing spin, the entanglement will increase, and then decrease slowly. In addition, we find that entanglement will approach a constant Nc with the increase of DM interaction, the constant increases with the increase of spin, and both the threshold temperature Tc and critical uniform external magnetic field Bc will increase with the increasing spin. Thus high-spin system can inhibit the influence of the external environment better.  相似文献   

13.
Density functional theory based calculations have been carried out to study structural, electronic, and magnetic properties of Zn1-xCoxO (x = 0, 0.25, 0.50, 0.75) in the zinc-blende phase, and the generalized gradient approximation proposed by Wu and Cohen has been used. Our calculated lattice constants decrease while the bulk moduli increase with the increase of Co 2+ concentration. The calculated spin polarized band structures show the metallic behavior of Co-doped ZnO for both the up and the down spin cases with various doping concentrations. Moreover, the electron population is found to shift from the Zn-O bond to the Co-O bond with the increase of Co 2+ concentration. The total magnetic moment, the interstitial magnetic moment, the valence and the conduction band edge spin splitting energies, and the exchange constants decrease, while the local magnetic moments of Zn, Co, O, the exchange spin splitting energies, and crystal field splitting energies increase with the increase of dopant concentration.  相似文献   

14.
A series of Th and F co-doped superconductors Sm1-xThxFeAsO1-yFy are synthesized and the variation of superconductivity with the doping level is investigated. At the fixed Th doping level x = 0.1, the superconducting transition temperature Tc increases monotonically with F content, and finally Tc reaches a maximum of about 55K around y = 0.1, and saturates for even more F content the normal state thermopower increases monotonically with 'overdoped' regime is not observed and possible explanation (y = 0.15). Similar to the SmFeAsO1-y Fy system, the doping level. However the decrease of Tc in the is discussed.  相似文献   

15.
The present study reports the magnetizations and magneto-transport properties of PrFel_xNixO3 thin films grown by pulsed laser ablation technique on LaA103 snbstrates. From DC M/H plots of these films, weak ferromagnetism or ferrimagnetism behaviors are observed. With Ni substitution, reduction in saturation magnetization is also seen. With Ni doping, variations in saturation field (Hs), coercive field (Hc), Weiss temperature (0), and effective magnetic moment (Pelf) are seen. A small change of magnetoresitance with application of higher field is observed. Various essential parameters like density of state (Nf) at Fermi level, Mott's characteristic temperature (To), and activation energy (Ea) in the presence of and in the absence of magnetic field are calculated. The present observed magnetic properties are related to the change of Fe-O bond length (causing an overlap between the oxygen p orbital and iron d orbital) and the deviation of the Fe-O-Fe angle from 180~. Reduction of magnetic domain after Ni doping is also explored to explain the present observed magnetic behavior of the system. The influence of doping on various transport properties in these thin films indicates a distortion in the lattice structure and single particle band width, owing to stress-induced reduction in unit cell volume.  相似文献   

16.
We investigate in underdoped cuprates possible coexistence of the superconducting order at zero momentum and pair density wave(PDW)at momentum Q=(Л,Л)in the presence of a Neel order.By symmetry,the d-wave uniform singlet pairing dS0 can coexist with the d-wave triplet PDW dTq,and the p-wave singlet PDW pSq can coexist with the p-wave uniform triplet pT0.At half filling,we find that the novel pSq+pT0 state is energetically more favorable than the dS0+dTQ state.At finite doping,however,the dS0+dTq state is more favorable.In both types of states,the variational triplet parameters cITq and pT0 are of secondary significance.Our results point to a fully symmetric Z2 quantum spin liquid with spinon Fermi surface in proximity to the Neel order at zero doping,which may not be adiabatically connected to the d-wave singlet superconductivity at finite doping with intertwining d-wave triplet PDW fluctuations and spin moment fluctuations.The results are obtained by variational quantum Monte Carlo simulations.  相似文献   

17.
We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory. The system is considered in the framework of bond dilution mixed Blume-Capel mode/ (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points. Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random singleion anisotropy. Some results have not been revealed in previous papers and predicted by Néel theory of ferrimagnetism.  相似文献   

18.
We investigate in underdoped cuprates possible coexistence of the superconducting order at zero momentum and pair density wave(PDW) at momentum Q=(π,π) in the presence of a Neel order.By symmetry,the d-wave uniform singlet pairing dS_0 can coexist with the d-wave triplet PDW dT_Q,and the p-wave singlet PDW pS_Q can coexist with the p-wave uniform triplet pT_0.At half filling,we find that the novel pS_Q+pT_0 state is energeticall.y more favorable than the dS_0+dT_Q state.At finite doping,however,the dS_0+dT_Q state is more favorable.In both types of states,the variational triplet parameters dT_Q and pTo are of secondary significance.Our results point to a fully symmetric Z_2 quantum spin liquid with spinon Fermi surface in proximity to the Neel order at zero doping,which may not be adiabatically connected to the d-wave singlet superconductivity at Bnite doping with intertwining d-wave triplet PDW fluctuations and spin moment fluctuations.The results are obtained by variational quantum Monte Carlo simulations.  相似文献   

19.
The g-factors of the intra-band states 12,13,14,15 in a magnetic-rotational band built on the 11 state in 82 Rb are measured for the first time by using a transient magnetic field-ion implantation perturbed angular distribution (TMF-IMPAD) method.The magnetic-rotational band in 82 Rb is populated by the 60 Ni(27 Al,4pn) 82 Rb reaction,and the time-integral Larmor precessions are measured after recoil implantation into a polarized Fe foil.The calculation of g-factors is also carried out in terms of a semi-classical model of independent particle angular momentum coupling on the basis of the four-quasiparticle configuration π(g 9/2) 2  π(p 3/2,f 5/2)  ν (g 9/2).The measured and calculated g-factors are in good agreement with each other.The g-factors and deduced shear angles decrease with the increase of spin along the band.This clearly illustrates the shear effect of a step-by-step alignment of the valence protons and neutrons in magnetic rotation.The semi-classical calculation also shows that the alignment of the valence neutron angular momentum is faster than that of the valence protons,which results in a decrease of g-factors with increasing spin.The present results provide solid evidence of the shear mechanism of magnetic rotation.  相似文献   

20.
迟锋  李树深 《中国物理快报》2005,22(8):2035-2038
We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号