首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite element model for the reverberation and propagation in a shallow water waveguide with a sandy bottom was calculated for five different environments at a center frequency of 250 Hz. The various environments included a rough water/sediment interface, a rough air/water interface, roughness at both interfaces and downward and upward refracting sound speed profiles with roughness at both interfaces. When compared to other models of reverberation such as ray theory, coupled modes, and parabolic equations, finite elements predicted higher levels of reverberation. At early times, this is due to the "fathometer" return, energy that is normally incident on the boundaries at zero range. At later times, the increased reverberation was due to high angle scattering paths between the two interfaces. Differences in reverberation levels among the environments indicated that scattered energy from the air/water interface is transmitted into the bottom at steep angles. This led to a large decrease in reverberation for a rough air/water interface relative to a rough water/sediment interface. Sound speed profile effects on reverberation were minimal at this frequency range. Calculations of the scintillation index of the different environments indicated that most of the reverberation was relatively Rayleigh-like with heavier tailed distributions at longer ranges.  相似文献   

2.
分析了起伏海面下风浪引起的气泡层对海面反射损失和对声传播的影响.一方面,气泡层会改变原来水中的声速剖面;另一方面,气泡层会对声波产生散射和吸收作用.考虑以上两方面的因素,分析了不同风速下气泡层对海面反射损失和声传播损失的影响,仿真发现,在风速大于10 m/s时,对于2 k Hz以上频率时气泡层对小掠射角下海面反射损失的影响不可忽视.在给定的水声环境中,当声源深度和接收深度都为7 m时,风速为16 m/s的风浪下生成的气泡层,在10 km处对3 k Hz的声传播损失的影响达到8.1 d B.当声源深度和接收深度都为18 m时,风速为16 m/s的风浪下生成的气泡层,在10 km处对3 k Hz的声传播损失的影响达到4 d B.  相似文献   

3.
浅海周期起伏海底环境下的声传播   总被引:1,自引:0,他引:1       下载免费PDF全文
海底粗糙对水下声传播及水声探测等应用具有重要影响.利用黄海夏季典型海洋环境,分析了同时存在海底周期起伏和强温跃层条件下的声传播特性,结果表明:由于海底周期起伏的存在,对于低频(<1 kHz)、近程(10 km)的声信号,传播损失可增大5—30 dB.总结了声传播损失及脉冲到达结构随声源深度、海底起伏周期及起伏高度等因素变化的规律.当海底起伏周期不变时,起伏高度越大引起的异常声传播的影响随之变大;当起伏高度不变时,随着起伏周期变大,其对声传播的影响逐渐变小.用射线理论分析了其影响机理,由于海底周期起伏改变了声波与海底的入射和反射角度,使得原本小掠射角入射到海底的声线变为大掠射角,导致海底的反射损失增大;另一方面,声线反射角度的改变会使得原本可以到达接收点的声能量,由于与海底作用次数增加或变为反向传播而大幅度衰减.在浅海负跃层环境下,声源位于跃层上比位于跃层下对声传播影响更大.周期起伏海底对脉冲声传播的影响表现在引起不同角度的声线(或简正波号数)之间的能量发生转化,一些大角度声线能量衰减加大,多途结构变少.多途结构到达时间及相对幅度的变化进而影响声场的频谱,会使得基于匹配场定位的方法性能受到影响.所以,声呐在实际浅海环境中应用时,应对起伏海底的影响予以重视.此外,研究结果对海底地形测绘空间精度的提高也具有重要参考意义.  相似文献   

4.
张宇  张晓娟  方广有 《物理学报》2012,61(18):184203-184203
首先建立大尺度分层介质粗糙面散射的物理模型, 基于Stratton-Chu积分方程和Kirchhoff近似导出了粗糙面散射场的计算公式. 采用高斯随机粗糙面来模拟实际的分层介质粗糙面, 通过数值计算得到了正下视单站雷达接收到的后向散射回波. 理论推导了散射场强度与表面粗糙度之间的定量关系, 并从数值仿真的角度分析了表面和次表面的粗糙度对散射回波的影响, 给出了散射场随粗糙度变化的曲线. 最后考察了分层介质的电特性参数(介电常数和电导率)对分层粗糙面散射场的影响, 并对计算结果做出了分析.  相似文献   

5.
金国梁  尹剑飞  温激鸿  温熙森 《物理学报》2016,65(1):14305-014305
应用了一种等效方法计算敷设声学覆盖层无限长圆柱壳体水下声散射特性.等效方法的核心是忽略复杂声学覆盖层内部的声学结构,将其作为具有等效材料参数的均匀阻尼层进行建模,该均匀阻尼层具有和原覆盖层相同的复反射系数.进而,应用COMSOL Multiphysics软件建立敷设均匀阻尼层圆柱壳体的有限元模型并求解其声散射特性.等效方法的关键是等效材料参数的获取.采用充水阻抗管实验和有限元数值实验两种方法获取声学覆盖层贴敷在与壳体具有相同厚度、相同材料背衬条件下的复反射系数,在此基础上,基于遗传算法反演材料的等效参数.研究表明,等效参数具有频变特性,且尽管等效杨氏模量和等效泊松比在频率范围内存在较大波动,但是等效前后复反射系数仍保持一致.为了验证等效方法求解壳体声散射特性的准确性,同时建立了敷设声学覆盖层壳体的完整有限元模型,将覆盖层内部声学结构进行精细建模,并求其声散射特性.结果表明,两种方法求得的形态函数符合得较好,在整个频率范围内平均误差大约为1 d B.  相似文献   

6.
This paper presents preliminary results of a recent study whose overall objectives are to determine the mechanisms contributing significantly to subcritical acoustic penetration into ocean sediments, and to quantify the results for use in sonar performance prediction for the detection of buried objects. In situ acoustic measurements were performed on a sandy bottom whose geoacoustical and geomorphological properties were also measured. A parametric array mounted on a tower moving on a rail was used to insonify hydrophones located above and below the sediment interface. Data covering grazing angles both above and below the nominal critical angle and in the frequency range 2-15 kHz were acquired and processed. The results are compared to two models that account for scattering of sound at the rough water-sediment interface into the sediment. Although all possible mechanisms for subcritical penetration are not modeled, the levels predicted by both models are consistent with the levels observed in the experimental data. For the specific seafloor and experimental conditions examined, the analysis suggests that for frequencies below 5-7 kHz sound penetration into the sediment at subcritical insonification is dominated by the evanescent field, while scattering due to surface roughness is the dominant mechanism at higher frequencies.  相似文献   

7.
The effect of surface roughness on the attenuation of low-frequency acoustic waves on a shallow ocean shelf is analyzed using numerical simulation. We focus here on transmission loss during propagation at short (less than 50 water layer depths) ranges from the sound source. The effect is considered both for a soft and hard bottom, when the sound velocity in the bottom is, respectively, lower or higher than the sound velocity in seawater. It is shown that to correctly predict losses at a short range in the presence of a rough upper boundary, it is necessary to take into account the interaction of both propagation and leaky modes. In the case of a hard bottom compared to a low-velocity one, the effect of surface roughness on propagation turned out to be the most pronounced.  相似文献   

8.
张荣瀚  李琪 《声学学报》2013,38(2):167-171
提出一种从低频混响信号中提取简正波衰减系数的方法。利用简正波过滤技术对垂直阵混响信号进行分析,获得单阶简正波混响声场。假设海底反向散射矩阵可分离,从单阶简正波平均混响强度中提取出有效海底反向散射矩阵元素,最后利用不同距离上的有效海底反向散射矩阵元素计算出简正波的衰减系数。利用该方法从混响信号中提取出的简正波衰减系数预报的声传播损失和相同海域实测声传播损失一致。该简正波衰减系数提取方法有效避免了海底散射衰减和简正波传播衰减耦合的问题,同时对海底参数反演和水声环境的快速评估也具有重要的意义。   相似文献   

9.
田炜  任新成 《计算物理》2018,35(2):205-211
为实现分层介质粗糙面电磁散射的矩量法研究,给出一种分层介质粗糙面电磁积分方程的区域分解方法.将格林定理应用于粗糙面所分的各子空间,结合波动方程和格林函数推导分层粗糙面的电磁积分方程,利用矩量法对其进行离散,数值计算得到雪层覆盖地面散射系数的角分布曲线,其中,粗糙表面由一维带限Weierstrass分形谱和Monte Carlo方法模拟.通过与时域有限差分法数值结果的比对,验证该方法的准确性,并分析散射系数随雪和地面参数、介质参数以及入射波参数的变化,获得了较完整的散射特征.  相似文献   

10.
Geoacoustic inversion work has typically been carried out at frequencies below 1 kHz, assuming flat, horizontally stratified bottom models. Despite the relevance to Navy sonar systems many of which operate at mid-frequencies (1-10 kHz), limited inversion work has been carried out in this frequency band. This paper is an effort to demonstrate the viability of geoacoustic inversion using bottom loss data between 2 and 5 kHz. The acoustic measurements were taken during the Shallow Water 2006 Experiment off the coast of New Jersey. A half-space bottom model, with three parameters density, compressional wave speed, and attenuation, was used for inversion by fitting the model to data in the least-square sense. Inverted sediment sound speed and attenuation were compared with direct measurements and with inversion results using different techniques carried out in SW06. Inverted results of the present work are consistent with other measurements, considering the known spatial variability in this area. The observations and modeling results demonstrate that forward scattering from topographical changes is important at mid-frequencies and should be taken into account in sound propagation predictions and geoacoustic inversion. To cope with fine-scale topographic variability, measurement technique such as averaging over tracks may be necessary.  相似文献   

11.
任新成  郭立新 《中国物理 B》2008,17(7):2491-2498
Electromagnetic scattering from a rough surface of layered medium is investigated, and the formulae of the scattering coefficients for different polarizations are derived using the small perturbation method. A rough surface with exponential correlation function is presented for describing a rough soil surface of layered medium, the formula of its scattering coefficient is derived by considering the spectrum of the rough surface with exponential correlation function; the curves of the bistatic scattering coefficient of HH polarization with variation of the scattering angle are obtained by numerical calculation. The influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the roughness surface parameters and the frequency of the incident wave on the blstatic scattering coefficient is discussed. Numerical results show that the influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the rms and the correlation length of the rough surface, and the frequency of the incident wave on the bistatic scattering coefficient is very complex.  相似文献   

12.
侯倩男  吴金荣 《物理学报》2019,68(4):44301-044301
在浅海,尤其是负梯度声速剖面和海面较为平静的浅海波导,海底界面反向散射是浅海混响的主要来源.经验散射模型只适用于分析浅海混响平均强度衰减特性,而基于物理机理建立的反向散射模型克服了这一缺陷,但同时也引入了其受地声模型约束的问题.本文结合了海底反射系数的三参数模型,对浅海远场海底反向散射模型进行了简化,以减少地声模型的输入参数.理论分析了海底反射系数的相移参数可以描述海底对声场的散射作用,无需任何海底地声参数的先验知识.通过对海底反向散射模型近似简化,结果表明在临界角附近和甚小掠射角范围内的海底粗糙界面反向散射模型的角度特性和强度特性受海底沉积层的影响不同:在临界角附近,海底反向散射的角度特性受海底反射系数的相移参数加权,而其散射系数则近似与相移参数无关;对于甚小掠射角,海底反向散射的角度特性近似与海底反射系数的相移参数无关,其散射系数则近似与相移参数的4次方成正比.  相似文献   

13.
The seismoacoustic field produced by an omnidirectional sound source located near the bottom of a shallow-water sea is numerically modeled at frequencies lower than 100 Hz. The main types of waves that are excited and scattered in the fluid and the layered bottom medium are represented in the form of wave hodographs on the distance-arrival time plane. A possibility to solve some problems of acoustic tomography of the bottom is demonstrated, in particular, the problem of determining the thickness of the bottom sediment layers and the velocities of the longitudinal and transverse waves propagating in them. By varying the elastic parameters of the layered bottom model, typical changes in the wave field are analyzed and the possibility to predict the presence of oil-saturated layers in the seafloor is established.  相似文献   

14.
姬伟杰  童创明 《中国物理 B》2013,22(2):20301-020301
A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method(PILE+FB-SA),and the back scattering data are obtained.Then,a conventional synthetic aperture radar(SAR) imaging procedure called back projection method is used to generate a two-dimensional(2D) image of the layered rough surfaces.Combined with the relative dielectric permittivity of realistic soil,the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces.Since the back scattering data are computed by using the fast numerical method,this method can be used to study layered rough surfaces with any parameter,which has a great application value in the detection and remote sensing areas.  相似文献   

15.
受海面强风和海-气相互作用影响,表面声道普遍存在于冬季海洋环境中,是一种天然有利于声传播的波导.但是海面波浪使得海表形成粗糙界面,会严重破坏这种优良性能.本文利用南海北部海区的一次冬季声传播实验数据,研究表面声道声传播特性.研究表明,海底底质对表面声道内声传播的影响较弱,当海面风较小时,涌浪造成的影响为主要原因.实验数据显示,考虑涌浪后的粗糙海面给70km远处带来了10dB的传播损失增长.因此在考察南海北部海区冬季声场特性时,不仅要考虑海面风浪的影响,更需要考虑周围海域传来的涌浪的影响.研究涌浪存在时的声传播特性对提升声纳设备在海况较差时的使用性能具有重要意义.  相似文献   

16.
This paper studies the low frequency vibrational behaviour and radiated sound of a submarine hull under axial excitation. The submarine is modelled as a fluid-loaded cylindrical shell with internal bulkheads and ring-stiffeners and closed at each end by circular plates. A smeared approach is used to model the ring stiffeners. The external pressure acting on the hull due to the fluid loading is calculated using an infinite model and is shown to be a good approximation at low frequencies. The radiated sound pressure is obtained by considering the finite cylindrical hull to be extended by two semi-infinite rigid baffles. The sound pressure is then only due to the radial displacement of the cylindrical shell, without taking into account the scattering at the finite ends. The main aim of this paper is to observe the influence of the various complicating effects such as the bulkheads, ring-stiffeners and fluid loading on the structural and acoustic responses of the finite cylindrical shell. Results from the analytical models presented in this paper are compared to the computational results from finite element and boundary element models.  相似文献   

17.
An underwater acoustic experiment with a two-dimensional rough interface, milled from a slab of PVC, was performed at a tank facility. The purpose was to verify the predictions of numerical models of acoustic rough surface scattering, using a manufactured physical model of an ocean bottom that featured shear effects, nonhomogeneous roughness statistics, and root-mean-square roughness amplitude on the order of the acoustic wavelength. Predictions of the received time series and interface scattering strength in the 100-300 kHz band were obtained from the Bottom Reverberation from Inhomogeneities and Surfaces-Small-Slope Approximation (BORIS-SSA) numerical scattering model. The predictions were made using direct measurements of scattering model inputs-specifically, the geoacoustic properties from laboratory analysis of material samples and the grid of surface heights from a touch-trigger probe. BORIS-SSA predictions for the amplitude of the received time series were shown to be accurate with a root-mean-square residual error of about 1 dB, while errors for the scattering strength prediction were higher (2-3.5 dB). The work is part of an ongoing effort to use physical models to examine a variety of acoustic scattering and propagation phenomena involving the ocean bottom.  相似文献   

18.
针对随机起伏冰面的声散射问题,建立了随机起伏冰面三维声散射的Kirchhoff近似数值计算模型。利用Delaunay三角剖分方法对随机起伏冰面进行三角面元剖分,然后采用Z-buffer算法进行面元的遮挡消隐,得到处于声波照射亮区的面元,最后采用Gordon面元积分的板块元方法计算得到随机起伏冰面的散射强度。数值计算模型中,将冰面认为是局部阻抗表面,直接代入起伏冰面局部反射系数进行散射声场的计算,避免了解析计算模型中对反射系数的近似处理。对比分析了数值和解析计算模型在小粗糙起伏冰面、大粗糙起伏冰面及不同声波入射角和不同声波频率时的散射强度。相比解析模型计算结果,数值模型计算结果与实测结果更吻合。   相似文献   

19.
Electromagnetic scattering from an inhomogeneous medium with a one-dimensional rough interface is analysed. The proposed procedure combines the finite element method (FEM), to model the electromagnetic field in the inhomogeneous region, with a perturbative technique to account for the contributions due to the rough interface. Backscattering and bistatic scattering coefficients are computed and plotted for both plane wave and Gaussian beam incident fields in the case of TMz polarization.  相似文献   

20.
The waveguide invariant β is affected by the shallow-water environment. The effect due to bottom sediment on β is investigated in this paper. It is found that the effect of sediment bottom can be concentrated on one parameter P-the bottom reflection phase-shift parameter. For a Pekeris waveguide, under Wentzel-Kramers-Brillouin (WKB) approximation, a very simple analytic relation is given: β ≈ 1 + P/(k(0)H(eff)), where H(eff) is the "effective depth," and H(eff) = H + P/2 k(0). The value of β related to different high-speed sediments (including layered sediment) ranges from 1.0 to 1.5. Some numerical examples including the layered sediment case are conducted to verify this result. Good agreement between the results calculated by KRAKEN and by WKB with parameter P has been found. Hence, the application of parameter P provides a model-free platform to investigate the bottom effect on the waveguide invariant β in shallow-water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号