首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel nanostructures of ZnF(OH) nanoplates decorated rhombus-shaped ZnF(OH) nanorods were fabricated. The obtained precursors were transformed by calcination to porous hierarchical ZnO nanostructures with the original morphologies retained. Field emission scanning electron microscope images exhibit that the nanoplates are grown in the interstices between the nanorods and on the top of the nanorods. The structure and composition of the obtained products have been confirmed by transmission electron microscope and X-ray diffraction measurements. The obtained ZnO nanostructures have been successfully used in solar cells. The light-to-electricity conversion results show that the complex nanostructures exhibit a power conversion efficiency of 1.36% with a photoelectrode thickness of 4.2 µm, which is comparable to those based on 40 µm vertically aligned hexagonal-shaped ZnO nanowire array photoelectrodes. These results indicate that the synthesized ZnO nanoplate decorated rhombus-shaped ZnO nanorod nanostructures are more suitable for application as a photoelectrode in solar cells.  相似文献   

2.
Arrays of ZnO nanorods and nanoplates are synthesized by the hydrothermal and electrochemical methods, respectively. The photoluminescence spectra indicate that the nanoplates have a more defective structure than the nanorods. The obtained ZnO nanostructures are used as the basis to construct dye-sensitized solar cells. The influence of morphology and defectiveness of ZnO nanostructures on the luminescent and photovoltaic properties of the cells is studied.  相似文献   

3.
The undoped and Al-doped ZnO nanostructures were fabricated on the ITO substrates pre-coated with ZnO seed layers using the hydrothermal method. The undoped well-aligned ZnO nanorods were synthesized. When introducing the Al dopant, ZnO shows various morphologies. The morphology of ZnO changes from aligned nanorods, tilted nanorods, nanotubes/nanorods to the nanosheets when the Al doping concentrations increase. The ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and Raman technology. The Al doping concentrations play an important role on the morphology and optical properties of ZnO nanostructures. The possible growth mechanism of the ZnO nanostructures was discussed.  相似文献   

4.
ZnO and ZnMgO nanostructures were synthesized on Si (1 0 0) substrates with the assistance of a gold catalyst, using a thermal evaporation method with a ZnO/ZnMgO compound as the source material. The substrates were placed in different temperature zones. ZnO nanostructures with different morphologies and different compounds were obtained at different substrate temperatures. Nanostructures with nanorods and nanosheets morphologies formed in the low and high temperature zones, respectively. The nanorods grown in the low temperature zone had two phases, hexagonal and cubic. Energy dispersive X-ray (EDX) results showed that the nanorods with a cubic shape contained more Mg in comparison to the nanowires with a hexagonal shape. We found that the substrate temperature and the gold catalyst were two key factors for the doping of Mg and the formation of nanostructures with different morphologies. Room temperature photoluminescence spectroscopy showed a blue-shift for the nanostructures with the nanorods morphology. This shift could be attributed to Mg effects that were detected in the nanorods.  相似文献   

5.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

6.
Nanostructured Bi2S3 was hydrothermally produced from Bi2O3 and thiocarbohydrazide in acidic solutions containing PVA, PEG and PVP. By using XRD, SAED and Raman spectrometry, the products were orthorhombic Bi2S3, with four vibration modes at 139.6, 253.7, 310 and 968.9 cm−1. The phase was also in accordance with the diffraction patterns obtained by simulation. SEM, TEM and HRTEM show that the products are clusters of nanorods produced in polymer-free solution, and nanostructured flowers of nanospears, nanorods and nanoplates in the respective PVA-, PEG- and PVP-added solutions, with their growths in the same direction of [0 0 1]. A formation mechanism was also proposed according to their phase and morphologies.  相似文献   

7.
This paper describes a simple hydrothermal procedure for high-yield synthesis of single-crystalline ZnO hexagonal nanoplates in a surfactant-free system at 70 °C. The structures and morphologies of the synthesized ZnO nanoplates are derived from characterisation by X-ray diffraction, and scanning and transmission electron microscopy. Their optical properties are recorded by Raman and photoluminescence spectroscopy. These ZnO hexagonal nanoplates exhibit the enhanced photocatalytic activity of phenol photodecomposition, suggesting that they could be served as an active system for the treatment of the waste water, in addition to their common applications. PACS 81.10.Dn; 61.10.Nz; 68.37.Hk; 78.55.Hx  相似文献   

8.
InSb nanostructures have been synthesized by the use of gas aggregation process. Nanoparticles with different shapes are obtained by controlling the growth and deposition temperature of the InSb nanoclusters. Triangular nanocrystals are commonly observed when the clusters are extracted from the condensation chamber of the source and deposited on the room temperature substrate at high vacuum. When the deposition is performed inside the condensation chamber at high temperature near the melting point of bulk InSb, nanoparticles formed on the substrate surface show several kinds of 3-dimensional morphologies, such as triangular or rectangular prisms, as well as hexagonal tablets. Keeping the same conditions for the cluster source operation and deposition, after long time growth, nanorods with hexagonal and quadrangular cross sections are formed through vapor-liquid-solid (VLS) process. The origin of the difference on the morphologies and shapes of the nanostructures is attributed to the anisotropic growth of InSb, which is temperature dependent.  相似文献   

9.
ZnO nanorods were synthesized through a simple chemical method by reacting Zn(C2H3O2)2·2H2O and NaOH at low temperature and the effects of changing the order of addition of reactants on the morphological evolution of ZnO nanorods were investigated. The samples were characterized by using XRD, SEM, EDX, TEM, BET and Raman techniques. Optical properties of the ZnO nanostructures were too investigated by UV–Vis spectroscopy at room temperature.The hexagonal wurtzite phase of ZnO was confirmed by X-ray diffraction (XRD) for all the samples. SEM and TEM analysis indicated that different morphologies were obtained by changing the order of addition of reactants.  相似文献   

10.
Without any other additives or additional energy, Au nanoplates have been successfully prepared and integrated simultaneously with the dedoped polypyrrole nanofiber film via the in situ reduction of AuCl4 on the film surface. The morphology and structure of the as‐prepared composite film are characterized, and its application for surface‐enhanced Raman scattering is also investigated. It has been found that the morphology of as‐prepared Au nanoplates is dependent on the reaction duration, while the density is dependent on the concentration of AuCl4 ions in the reaction process. It is suggested that polypyrrole plays dual reducing and structure‐directing roles during the formation of Au nanoplates. Surface‐enhanced Raman scattering study shows that the Au nanoplates give an intensive and enhanced Raman scattering when 4‐aminothiophenol is used as a probing molecule. The employed approach may shed some light on simultaneously fabricating and immobilizing other noble metal micro/nanostructures with unique morphology. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Large‐scale and tunable synthesis of FeCo/graphitic carbon (FeCo/GC) core–shell nanoparticles as a promising material for multipurpose biomedical applications is reported. The high‐quality graphitic structure of the carbon shells is demonstrated through high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and Raman spectroscopy. A saturation magnetization of 80.2 emu g?1 is reached for the pure FeCo/GC core–shell nanoparticles. A decrease in the saturation magnetization of the samples is observed with an increase in their carbon content with different carbon morphologies evolved in the process. It is also shown how hybrid nanostructures, including mixtures of the FeCo/GC nanoparticles and multi‐walled carbon nanotubes (MWNTs) or carbon nanorods (CNRs), can be obtained only by manipulation of the carbon‐bearing gas flow rate.  相似文献   

12.
Indium nanorods are grown on silicon substrates by using magnetron-sputtering technique. Film morphologies and nanorod microstructure are investigated by using scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray diffraction. It is found that the mean diameter of the nanorods ranges from 30nm to 100nm and the height ranges from 30nm to 200nm. The HRTEM investigations show that the indium nanorods are single crystals and grow along the [100] axis. The nanorods grow from the facets near the surface undulation that is caused by compressive stress in the indium grains generated during grain coalescence process. For low melting point and high diffusivity metal, such as bismuth and indium, this spontaneous nanorod growth mechanism can be used to fabricate nanostructures.  相似文献   

13.
The zinc oxide (ZnO) nanorods/plates are obtained via hydrothermal method assisted by etched porous Al film on Si substrate. The products consist of nanorods with average diameter of 100 nm and nanoplates with thickness of 200-300 nm, which are uniformly distributed widely and grown perpendicularly to the substrate. The ZnO nanoplates with thickness of 150-300 nm were grown on Si substrate coated with a thin continuous Al film (without etching) in the same aqueous solution. The growth mechanism and room temperature photoluminescence (PL) properties of ZnO nanorods/plates and nanoplates were investigated. It is found that the introduction of the etched Al film plays a key role in the formation of ZnO nanorods/plates. The annealing process is favorable to enhance the UV PL emissions of the ZnO nanorods/plates.  相似文献   

14.
We review our recent results concerning surface-enhanced Raman scattering (SERS) by confined optical and surface optical phonons in semiconductor nanostructures including CdS, CuS, GaN, and ZnO nanocrystals, GaN and ZnO nanorods, and AlN nanowires. Enhancement of Raman scattering by confined optical phonons as well as appearance of new Raman modes with the frequencies different from those in ZnO bulk attributed to surface optical modes is observed in a series of nanostructures having different morphology located in the vicinity of metal nanoclusters (Ag, Au, and Pt). Assignment of surface optical modes is based on calculations performed in the frame of the dielectric continuum model. It is established that SERS by phonons has a resonant character. A maximal enhancement by optical phonons as high as 730 is achieved for CdS nanocrystals in double resonant conditions at the coincidence of laser energy with that of electronic transitions in semiconductor nanocrystals and localized surface plasmon resonance in metal nanoclusters. Even a higher enhancement is observed for SERS by surface optical modes in ZnO nanocrystals (above 104). Surface enhanced Raman scattering is used for studying phonon spectrum in nanocrystal ensembles with an ultra-low areal density on metal plasmonic nanostructures.  相似文献   

15.
《Current Applied Physics》2014,14(8):1031-1035
PbS nanostructures were grown by sulfuration of two lead sheets in a tube furnace under nitrogen (N2) and argon/hydrogen (Ar/H2) conditions. All conditions, such as the sheet temperature, sulfur powder temperature, and the carrier gas rate, were the same for two samples. Field emission scanning electron microscope (FESEM) images showed that the nanostructures with rod morphology were formed on the sheets. However, the nanorods that were grown under N2 gas, were denser, more compact, and a different shape and size in comparison to another sample. In addition, the nanorods grown under N2 gas exhibited a rectangular shape, while another sample showed nanorods that were tapered. X-ray diffraction (XRD) patterns indicated that these nanorods were PbS with a cubic phase. Furthermore, Raman measurements confirmed the XRD results, and indicated three Raman active modes of PbS phase. The optical characterization results showed a band gap for the PbS nanorods in the infrared region.  相似文献   

16.
Three kinds of Co3O4 nanomaterials with different morphologies were synthesized controllably by a post-anneal-assisted hydrothermal method in this study. X-ray diffraction and scanning electron microscopy indicated that all three kinds of samples were pure cubic phase of Co3O4 with morphologies of nanorods, nanoclusters, and nanoplates. Moreover, the transmission electron microscopy (TEM) and high-resolution TEM showed that the Co3O4 nanorods were bamboo-like and highly crystalline structures. When these materials were applied to the lithium-ion batteries (LIBs) as anode materials, the Co3O4 of nanorods demonstrated the best performance. It has a stable reversible capacity of 954 mAh g?1 as the anode of a LIB, much higher than the other two kinds of Co3O4 of rod-like nanoclusters and nanoplates, even after 35 cycles. All results showed that the morphology and microstructure take very important roles in the performance of Co3O4 as the anode materials in LIBs.  相似文献   

17.
Large-scale Zn2GeO4 nanorods with a length of about 10 μm have been synthesized via a facile hydrothermal process in the absence of any surfactant. The synthesized nanorods are single crystals with a rhombohedral phase. The dependence on the growth conditions, such as reaction temperature, reaction time, compactness and GeO2 concentration, of the formation, morphologies and sizes of the Zn2GeO4 nanostructures has been investigated. Proper selection and combination of the growth conditions are the key aspects to control the formation, morphologies and sizes of the Zn2GeO4 nanostructures. The nucleation and crystalline growth mechanism are proposed to explain the formation and growth of Zn2GeO4 nanorods. The photoluminescence spectrum of the Zn2GeO4 nanorods exhibits three fluorescence emission peaks centered at 421, 488 and 529 nm when the excitation wavelength is 235 nm.  相似文献   

18.
The ZnO nanostructures were hydrothermally synthesized on glass and Al substrates, respectively, using zinc chloride, zinc nitrate, and zinc acetate as precursor. The as-prepared products were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Different ZnO nanostructures were obtained, such as nanorods, nanosheets, flower-like nanostructures and so on. The effects of the substrates and anions of zinc salts on the morphologies of the resulting products have been investigated.  相似文献   

19.
In this study, ZnO nanorods (NRs) and nanocombs (NCs) are synthesized by simple galvanostatic electrochemical deposition technique, without prepared any ZnO seed-layer or catalyst. The effect of the different morphologies on the UV sensing characteristics has been studied under ambient conditions. The photoluminescence (PL) spectra and time-dependent photoresponse of the ZnO nanostructures exhibited good optical properties. At room temperature, NCs showed superior response with 9% change of its resistance, few seconds response time and fully recovery. Inversely, in high temperature ZnO NRs indicated better response than NCs with the variation of 25% of its resistance. The dependence photoresponse on temperature demonstrated clearly how surface-defects affect on UV response of ZnO nanostructures. Our approach is to provide a simple and cost-effective way to fabricate UV detectors.  相似文献   

20.
One-dimensional (1D) cadmium sulphide (CdS) nanostructures, including micro/nanorods, and nanostructures resembling flowers and cactus have been synthesized by electrochemical template deposition technique, using polycarbonate membranes, by controlling various reaction parameters. These 1D CdS nanostructures were characterized structurally through the X-ray diffraction (XRD) studies and morphologically through scanning electron microscopy (SEM). It was found that apart from the dimensions of the pores of the templates, the geometrical morphologies of the CdS 1D nanostructures were significantly influenced by the synthesizing parameters also. The optical characterization has been done by UV–visible absorption and room-temperature photoluminescence (PL) studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号