首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manipulating the exciton dynamics in a heterobilayer (HB) composed of two transition metal dichalcogenides (TMDCs) is important in the development of photonic/plasmonic devices based on TMDC HBs. Here, the realization of such a manipulation in a MoS2/WS2 HB is reported by using a Si/Au hybrid nanocavity composed of a Si nanoparticle and an Au film, which is manifested in the modification in the photoluminescence (PL) of the embedded MoS2/WS2 HB. It is shown that a transition from PL quenching to PL enhancement can be achieved by adjusting the diameter of the Si nanoparticle, which modifies the plasmon resonance supported by the Si/Au nanocavity. More interestingly, it is demonstrated that the enhancement factor can be manipulated by shifting the exciton/trion resonance close to or far away from the plasmon resonance by simply increasing the laser power. It is revealed that the manipulation is realized by effectively controlling the strain and Purcell effects induced by the Si/Au nanocavity. A PL enhancement factor as large as ≈187 in the MoS2/WS2 HB at a high laser power is observed. The findings suggest the potential applications of dielectric-metal hybrid nanocavities in the manipulation of the exciton dynamics in TMDC HBs and the development of novel plasmonic devices.  相似文献   

2.
Nonlinear plasmonic metasurfaces are compatible with complementary metal oxide semiconductor technology and highly promising for on-chip optical switching and modulations and nanoscale frequency conversions. However, the low nonlinearoptical response of metasurface devices limits their practical applications. To circumvent this constraint, we propose the design of a nanocavity plasmonic metasurface, in which the strong light localization in the nanocavity can be used to boost the efficiency of second-harmonic generation. Compared with the single-layer counterpart, experimental results show that the intensity of the second-harmonic waves in the nanocavity metasurface is enhanced by ~790 times. The proposed nanocavity plasmonic metasurfaces in this work may open new routes for developing highly efficient nonlinear metacrystals for on-chip nonlinear sources,nonlinear image encryption, information processing, and so on.  相似文献   

3.
A kind of multi-channel plasmonic filters based on metal–insulator–metal waveguides with disk-shaped nanocavities is proposed and numerically investigated. By calculating the resonant mode of disk-shaped nanocavity, it is found that the radius and refractive index of the nanocavity effectively control the resonance wavelength, which is consistent with the results obtained by finite-difference time-domain method. The characteristics of resonance spectra are influenced by the gap width between the cavity and waveguide, as can be exactly analyzed by temporal coupled mode theory. In addition, multi-channel plasmonic filters are achieved by increasing the number of nanocavity.  相似文献   

4.
Surface plasmon amplification by the stimulated emission of radiation (spaser) in plasmonic nanocavities as a novel concept has quickly advanced in recent years. Understanding the nature and mechanism of the spaser system is important for both fundamental studies and the development of new applications. We theoretically investigate the spaser made from a plasmonic nano-antenna embedded with active gain media by using an analytical semiclassical theory. It incorporates the four-level atomic rate equations in association with the classical oscillator model for active materials and Maxwell’s equations for fields. The nano-antenna cavity has a large Purcell factor and low absorption loss which is beneficial for the realization of low-threshold spaser. We use the theory to uncover all the characteristics of this nanocavity spaser system, including the enhancement of the local electric field, gain, saturation phenomenon and lasing threshold. It is found that an important quantity named the cavity loss coupling strength coefficient can be explored to provide a new way to design the nanocavity precisely to reduce the absorption power density and enhance the spaser output power density simultaneously. The theory can be commonly used in understanding and designing various micro/nanolaser and spaser systems.  相似文献   

5.
This paper reports on a novel design for a tunable filter and plasmonic sensor based on the metal–insulator–metal waveguide with a nanocavity resonator. Simulation results show that as a one-channel filter, the resonance wavelengths show a linear red-shift with an increase in nanocavity length with a slope of 1742 nm/μm and a nonlinear blue-shift with an increase in nanocavity width, respectively. A two-channel filter can be realized using two nanocavities and the arrangement of the two nanocavities with respect to the waveguide and the value of the distance between the nanocavities has only a marginal effect on the filter notch wavelength. Finally, both in-slit and out-slit refractive index plasmonic sensors are investigated with a sensitivity of 710 nm/RIU and 250 nm/RIU, respectively.  相似文献   

6.
A novel kind of plasmonic wavelength demultiplexers (WDMs) based on two-dimensional metal–insulator–metal waveguides with side coupled nanocavities (SCNCs) is proposed and numerically investigated. The WDMs contain three waveguide output channels, each of which functions as a dual-stopband plasmonic filter. The demultiplexing wavelengths can be tuned by controlling the lengths and widths of SCNCs. The finite-difference time-domain results can be accurately analyzed by the resonant theory of nanocavity. Our structures have important potential applications for design of WDM systems in highly integrated optical circuits.  相似文献   

7.
Hongyu Zhang 《中国物理 B》2021,30(11):117801-117801
Photonic-plasmonic hybrid microcavities, which possess a higher figure of merit Q/V (the ratio of quality factor to mode volume) than that of pure photonic microcavities or pure plasmonic nano-antennas, play key roles in enhancing light-matter interaction. In this review, we summarize the typical photonic-plasmonic hybrid microcavities, such as photonic crystal microcavities combined with plasmonic nano-antenna, whispering gallery mode microcavities combined with plasmonic nano-antenna, and Fabry-Perot microcavities with plasmonic nano-antenna. The physics and applications of each hybrid photonic-plasmonic system are illustrated. The recent developments of topological photonic crystal microcavities and topological hybrid nano-cavities are also introduced, which demonstrates that topological microcavities can provide a robust platform for the realization of nanophotonic devices. This review can bring comprehensive physical insights of the hybrid system, and reveal that the hybrid system is a good platform for realizing strong light-matter interaction.  相似文献   

8.
A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) ,and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can gener- ate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positior!i0g systems for applications in dynamic beam shaping and scanning on the nanoscale.  相似文献   

9.
The plasmonic nanocavity is an excellent platform for the study of light matter interaction within a sub-diffraction volume under ambient conditions.We design a structure of plasmonic tweezers,which can trap molecular Jaggregates and also serve as a plasmonic cavity with which to investigate strong light matter interaction.The optical response of the cavity is calculated via finite-difference time-domain methods,and the optical force is evaluated based on the Maxwell stress tensor method.With the help of the coupled oscillator model and virtual exciton theory,we investigate the strong coupling progress at the lower level of excitons,finding that a Rabi splitting of 230 meV can be obtained in a single exciton system.We further analyze the relationship between optical force and model volume in the coupling system.The proposed method offers a way to locate molecular J-aggregates in plasmonic tweezers for investigating optical force performance and strong light matter interaction.  相似文献   

10.
李旭峰  潘石  郭英楠  王乔 《中国物理 B》2011,20(1):15204-015204
Characteristics of plasmonic wave propagating in nanocavity formed by two silver films are studied numerically. The groove etched inside wall of the top film makes it possible to control the propagation when light goes through the top film along a nanoslit into the cavity. It is found that the transmission wave through the channel of groove etched side can be filtered linearly with the groove of a certain depth; while the other side is still open for this wave and its intensity can be enhanced periodically with the variable groove position in both films, which are explained well based on the interference of plasmonic waves in the system.  相似文献   

11.
We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure, where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide. We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred picoseconds within the dephasing time of the QD. The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode, which can be explored in future for on-chip all-optical logic and signal processing.  相似文献   

12.
张尧  张杨  董振超 《物理学报》2018,67(22):223301-223301
分子尺度上的光电相互作用研究可以为发展未来信息和能源技术提供科学基础.扫描隧道显微镜不仅可以用来观察和操纵纳米世界中的原子和分子,而且其高度局域化的隧穿电流还可以被用来激发隧道结中的分子,使之发光,以研究局域场下的分子光电特性.本文综述了中国科学技术大学单分子光电研究组近期在锌酞菁分子电致发光方面取得的科学进展,包括:1)利用有效的电子脱耦合与纳腔等离激元调控技术,实现了隧穿电子激发下的单个锌酞菁分子的电致荧光,并通过发展相关的光子发射统计测量方法,表征了单个分子在隧穿电子激发下的电致荧光具有单光子发射特性;2)发展了具有亚纳米空间分辨的荧光光谱成像技术,实现了对酞菁分子间相干偶极相互作用特征的实空间观察;3)对分子与纳腔等离激元之间的相干耦合作用进行了亚纳米精度的操控,在单分子水平上观察到了法诺共振和兰姆位移效应.这些研究结果不仅为研发基于有机分子的电泵纳米光源与单光子光源等分子光电器件提供了新的思路,而且为在单分子尺度上研究分子光电特性、分子间能量转移以及场与物质之间的相互作用规律等提供了新的表征方法.  相似文献   

13.
The silicon-based three-dimensional hybrid long-range plasmonic waveguide not only supports long-range propagation distance (~mm) but also has an ultra-small modal area (~10?2 μm2) at 1.55 μm. Here, we propose a directional coupler for effective coupling from a dielectric slab-waveguide to the hybrid plasmonic waveguide on a silicon platform. Our simulation results show that the coupler is able to excite hybrid long-range plasmonic mode with short coupling length, low insertion loss, and high extinction ratio. With the arm separation of 0.3 μm, the coupling length can be made 5.2 % of the propagation length of the hybrid plasmonic waveguide, while the insertion loss and extinction ratio are ?0.12 and 22.4 dB, respectively. This coupler offers the potential applications in signal routing between the hybrid long-range plasmonic waveguide and dielectric waveguide in the photonic integrated circuits.  相似文献   

14.
The plasmonic enhancement of nanoshelled nanocavity (a silica core coated by Ag or Au shell) on the spontaneous emission of an encapsulated emitter (a molecule or quantum dot) is studied systematically by analyzing the excitation rate and the apparent quantum yield together. By averaging all possible locations and orientations of the emitter, the average enhancement factor (AEF) of the emitter randomly located in the core is calculated. Our results show that the AEF is weaker than that of the emitter located at the core center. In addition, Ag nanoshell (NS) is a narrowband enhancer. As the thickness of the shell becomes thinner, the surface plasmon resonance of NS is red-shifted and the peak of AEF increases. The specificity of Ag NS for enhancing a specific spontaneous emission is higher than Au NS. In addition, Ag NS with a smaller core has a larger AEF, while Au NS has an optimal radius of core (30 nm) to obtain the maximum AEF. Moreover, the AEF is reduced, as the Stokes shift increases.  相似文献   

15.
For development of complementary metal–oxide–semiconductor (CMOS)-compatible integrated optical circuits, vertical directional coupling between a hybrid plasmonic slot waveguide and a Si waveguide is theoretically investigated in detail. To determine the vertical separation gap and efficient coupling length, we investigate the characteristics of the even and odd supermodes at a wavelength of 1.55 μm. The vertical coupler transfers 90% of the power carried by the Si waveguide to the hybrid plasmonic slot waveguide after normalizing to reference waveguides when the gap is 60 nm and the coupling length is 2.6 μm. Because of the lossy hybrid guided mode in the plasmonic waveguide, the transmitted power exhibits damped sinusoidal behavior depending on the overlapping length. The proposed vertical coupler shows more efficient light coupling between a dielectric and plasmonic waveguide in comparison to the other types of hybrid coupler, and can be exploited further for on-chip integrated opto-electronic circuits.  相似文献   

16.
《中国物理 B》2021,30(6):64209-064209
Silicon-based electro-optic modulators are the key devices in integrated optoelectronics. Integration of the graphene layer and the photonic crystal(PC) cavity is a promising way of achieving compact modulators with high efficiency. In this paper, a high-quality(Q) acceptor-type PC nanocavity is employed to integrate with a single-layer graphene for realizing strong modulation. Through tuning the chemical potential of graphene, a large wavelength shift of 2.62 nm and a Q factor modulation of larger than 5 are achieved. A modulation depth(12.8 dB) of the reflection spectrum is also obtained.Moreover, the optimized PC nanocavity has a large free spectral range of 131.59 nm, which can effectively enhance the flexibility of the modulator. It shows that the proposed graphene-based PC nanocavity is a potential candidate for compact,high-contrast, and low-power absorptive modulators in integrated silicon chips.  相似文献   

17.
Based on the analysis of the near-field evanescent wave in total internal reflection, the flip-chip light-emitting diode (LED) structure was proposed by placing a plasmonic Ag grating and a perforated sapphire grating in the substrate. The finite difference time domain (FDTD) method has been applied to study the spectral properties of the hybrid structure and the enhancement factor of light extraction efficiency of the LED model. From the computation examples, the effects of structure parameters on the extraction enhancement have been investigated. The results indicate that the plasmonic grating can enhance the near-field evanescent wave and couple it to propagation wave in the specific wavelength bands, which leads to the photons emitting out of the LED chip with high extraction efficiency. Due to the combined gratings used, the enhancement factor of the light extraction efficiency can reach approximately 4 times at a relatively longer wavelength.  相似文献   

18.
We propose an electrically-pumped hybrid plasmonic laser through the integration of a semiconductor quantum well laser with a thin metal film. Due to the coupling between the TM waveguide mode in the III–V active layer and the LRSPP mode around the metal thin film, light can be confined in both regions and optical gain can be provided by the active layer. We have shown that the quasi-odd supermode is the preferred lasing mode because of its larger confinement factor and lower modal loss compared to the quasi-even supermode. Through optimizing the gap distance between the active region and the metal film, we can obtain low threshold and a large amount of optical energy confined around the metal film for the hybrid plasmonic laser.  相似文献   

19.
Zhang J  Cai L  Bai W  Xu Y  Song G 《Optics letters》2011,36(12):2312-2314
In this Letter, we propose a hybrid plasmonic nanosystem consisting of a silver cladding layer with a semicylinder bump on top of InGaAsP nanowire. Because of the coupling between the dielectric waveguide mode and surface plasmon polariton mode, the hybrid plasmonic mode can exhibit low loss with strong field localization. The finite element method numerical simulations are employed to evaluate the performances of the hybrid mode. In order to achieve the lossless propagation of the hybrid mode with the mode area of 0.0058(λ2/4) at 1.55 μm, the material gain of 200 nm × 300 nm InGaAsP nanowire should reach 1223 cm?1.  相似文献   

20.
Li Q  Song Y  Zhou G  Su Y  Qiu M 《Optics letters》2010,35(19):3153-3155
Asymmetric directional coupling between a hybrid plasmonic waveguide with subwavelength field confinement and a conventional dielectric waveguide is investigated. The proposed hybrid coupler features short coupling length, high coupling efficiency, high extinction ratio, and low insertion loss; it can also be integrated into a silicon-based platform. This coupler can be potentially adopted for signal routing between plasmonic waveguides and dielectric waveguides in photonic integrated circuits. Furthermore, it can be exploited to efficiently excite hybrid plasmonic modes with conventional dielectric modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号