首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.  相似文献   

2.
Developing enzyme-free sensors with high sensitivity and selectivity for H2O2 and glucose is highly desirable for biological science.Especially,it is attractive to exploit noble-metal-free nanomaterials with large surface area and good conductivity as highly active and selective catalysts for molecular detection in enzyme-free sensors.Herein,we successfully fabricate hollow frameworks of Co3O4/N-doped carbon nanotubes(Co3O4/NCNTs)hybrids by the pyrolysis of metal-organic frameworks followed by calcination in the air.The as-prepared novel hollow Co3O4/NCNTs hybrids exhibit excellent electrochemical performance for H2O2 reduction in neutral solutions and glucose oxidation in alkaline solutions.As sensor electrode,the Co3O4/NCNTs show excellent non-enzymatic sensing ability towards H2O2 response with a sensitivity of 87.40μA(mmol/L)^-1 cm^-2,a linear range of 5.00μmol/L-11.00 mmol/L,and a detection limitation of 1μmol/L in H2O2 detection,and a good glucose detection performance with 5μmol/L.These excellent electrochemical performances endow the hollow Co3O4/NCNTs as promising alternative to enzymes in the biological applications.  相似文献   

3.
《中国化学快报》2020,31(5):1109-1113
The exploitation of multifunctional nanocomposites is highly desired in environmental monitoring,biosensors,and medical diagnosis.In this paper,a simple approach has been proposed to fabricate MoS_2 decorated N-doped carbon nanotubes(NCNTs@MoS_2) hybrid composites as efficient peroxidase-like mimics.The combination of the MoS_2 and N-doped carbon nanotubes(NCNTs) brings about an enhanced synergistic effect,leading to remarkably decent intrinsic peroxidase-mimic activities than that of the single components.Due to the high catalytic efficiency of the resultant NCNTs@MoS_2 hybrid nanotubes as peroxidase-like mimics,a co nvenient colorimetric approach for the sensitive determination of H_2 O_2 and ascorbic acid have been developed with a detection limit of about 0.14 μmol/L and 0.12 μmol/L,respectively.The work offers a new strategy for the fabrication of peroxidase-like nanomaterials with excellent catalytic activity,which indicates great promising applications in sensitive detections in real samples.  相似文献   

4.
The present study explores an electroreduced graphene oxide-bismuth nanoparticles composite(ErGOBi) as an electrochemical sensor for the determination of an anticancer drug, gemcitabine hydrochloride(GMB). The Er-GOBi interface was prepared by drop casting of bismuth nitrate-graphene oxide suspension on a glassy carbon electrode(GCE) followed by electro-reduction in the potential range of 0.6 V to 1.7 V. SEM, FTIR, EDAX and AFM techniques were employed for the characterization of prepared materials. Cyclic voltammetric and electrochemical impedance spectroscopic methods were used to understand the charge transfer properties of stepwise modification of Er-GOBi/GCE. GMB exhibited an irreversible oxidation peak at 1.144 V on Er-GOBi/GCE in phosphate buffer of p H 3. A 100-fold enhanced oxidation peak current was observed at Er-GOBi/GCE when compared to that at bare GCE.Sensing performance of Er GO-Bi/GCE was optimized by varying peak current dependent parameters.Linear relationship between the peak current and concentration of GMB was observed in the range of 0.1–51.1 mmol/L in differential pulse voltammetric method and 2.1–61.1 mmol/L in linear sweep voltammetric method. The practical utility of the proposed sensor, Er-GOBi/GCE was demonstrated by determining GMB in pharmaceutical formulations and spiked urine samples.  相似文献   

5.
The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples.  相似文献   

6.
The Prussian blue nanoparticles(PBNPs) were prepared by a self-assembly process, on a glassy carbon(GC) electrode modified with a poly(o-phenylenediamine)(Po PD) film. The stepwise fabrication process of PBNPs-modified Po PD/GCE was characterized by scanning electron microscopy(SEM) and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of modified electrodes. The PBNPs/Po PD/GCE showed adequate mechanical, electrochemical stability and good sensitivity in comparison with other PB based H_2O_2 sensors. The present modified electrode exhibited a linear response for H_2O_2 reduction over the concentration range of 1–58.22 mmol L ~(-1)with a detection limit of ca. 0.8 mmol L ~(-1)(S/N = 3), and sensitivity of 3187.89 m A(mol L ~(-1)) ~(-1)cm 2using the amperometric method. This sensor was employed for the H_2O_2 determination in real sample and also exhibited good interference resistance and selectivity.  相似文献   

7.
A novel type of carboxylated multiwalled carbon nanotube modified electrode(c-MWCNTs/GCE) was constructed and the electrochemical properties of phenacetin(PHE) at it were studied. In a buffer solution of 0.1 mol/L HAc-NaAc(pH=5.3), PHE exhibited a couple of quasi-reversible redox peaks and an anodic peak in the poten- tial range of 0.2--1.2 V at c-MWCNTs/GCE. The peak current was proportional to the concentration of PHE in the range of 4.0× 10^-6_ 1.0 × 10^-4 mol/L with a detection limit of 1.0× 10^-6 mol/L(S/N=3). The c-MWCNTs/GCE showed excellent repeatability and stability and the electrochemical reaction mechanism of PHE was proposed. This method was used to determine the content of PHE in medical tablets and the recovery was determined to be 96.5%--104.2% by means of a standard addition method.  相似文献   

8.
A simple,sensitive,and reliable method for the voltammetric determination of bisphenol A(BPA) by using carboxylic group functionalized single-walled carbon nanotubes(f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene)(PC4) complex modified glassy carbon electrode(GCE) has been successfully developed.The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques.The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS(0.1 mol/L,pH 7.0).The surface morphology of the 3D network of composite film is beneficial for the adsorption of analytes.Under the optimized conditions,the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L(R~2 = 0.9989),with a limit of detection of 0.032 μmol/L(S/N = 3).The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of/-SWCNT and the extraordinary conductivity of PC4.Furthermore,the proposed modified electrode displays high stability and good reproducibility.The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.  相似文献   

9.
Co3O4/reduced graphene oxide composites were synthesized via a simple electrochemical method from graphene oxide and Co(NO3)2·6H2O as raw materials.Co3O4 nanoparticles with sizes of around 30-50 nm were distributed on the surface of graphene nanosheets confirmed by scanning electron microscopy and transmission electron microscopy.Electrochemical properties of Co3O4/graphene composite were tested by cyclic voltammetry,galvanostatic charge-discharge,and electrochemical impedance spectroscopy.The Co3O4/reduced graphene oxide composite was used as the pseudocapacitor electrode in the 2 mol/L NaOH aqueous electrolyte solution.The Co3O4/reduced graphene oxide composite electrode exhibited a specific capacitance of 357 F/g at a current density of 0.5 A/g in a three-electrode system.72% of capacitance was retained when the current density increased to 3 A/g.The Co3O4/reduced graphene oxide composite prepared electrodes show a high rate capability and excellent long-term stability.After 1000 cycles of charge and discharge,the capacitance is still maintained 87% at a current density of 1 A/g,indicating that the composite is a oromising alternative electrode material used for supercapacitors.  相似文献   

10.
MENG Zeda  OH Wonchun 《催化学报》2012,(9):1495-1501
CoS2,CoS 2-C60 /TiO2,CoS2-CNT/TiO2,and CoS2-Graphene/TiO2 were prepared.The TiO2 products had the anatase phase structure and interesting surface compositions.X-ray diffraction patterns of the CoS2-carbon/TiO2 composites showed a single and clear anatase phase and the CoS2 structure.Scanning electron microscopy characterization of the texture on the CoS 2-carbon/TiO2 composites showed a homogenous composition.Energy-dispersive X-ray spectra for elemental identification showed the presence of C and Ti with strong Co and S peaks from the CoS2-carbon/TiO2 composites.The composites obtained were also characterized by transmission electron microscopy and UV-Vis spectroscopy.CoS2-carbon/TiO2 composites showed excellent photocatalytic activity for the degradation of methylene blue under visible light irradiation.This was attributed to both photocatalysis on the TiO2 support and charge transfer by the carbon nanomaterial,and the introduction of CoS2 to enhance transfer of photogenerated electrons.  相似文献   

11.
Nafion solution as a binder,the Gr/CeO2 /Nafion/GCE modified electrode was prepared based on graphene (Gr)-nano cerium oxide (CeO2 )composite materials. The electrochemical behavior of Pb(II)on the modified electrode was investigated using differential pulse anodic stripping voltammetry (DPASV). Subsequently,a determination method for Pb(II)was established. The concentrations and ratio of composite materials,buffer solution pH,modification amount,enrichment potential and time were optimized. Under the optimal conditions ,the peak current of Gr/CeO2 /Nafion/GCE showed good linearity in the range of 0.24-48.31 μµmol/L of Pb(II),and the detection limit was 4.3 nmol/L. Interference experiments showed that the other common anions and cations in water samples caused little interference to Pb(II)detection. Furthermore,the interference of Cu(II)within 10 times is acceptable. The modified electrode was used to the detection of Pb(II) in four complex water samples,and the recovery rates of the spiked assays were from 89.5% to 107.7%. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

12.
Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40 ℃, pH 5 and reaction time 2.5h.  相似文献   

13.
The activated carbon fiber(ACF) was prepared from polyacrylonitrile-based pre-oxidized fiber(PANOF) by KOH direct activation. The influence of activation conditions including impregnation ratio(the mass ratio of PANOF to KOH), activation temperature and activation time on the pore structure and electrochemical properties of ACF was investigated, and the corresponding activation mechanism was proposed. The ACF prepared at an activation temperature of 800℃ and an impregnation ratio(the mass ratio of PANOF to KOH) of 1:2 for an activation time of 1 b in 6 mol/L KOH solution exhibits a specific surface area of 3029 m^2/g, a mesoporosity of 84.2% and a specific capacitance of 288 F/g, and shows a good capacitive performance. The prepared ACF can be used as the electrode material for supercapacitors.  相似文献   

14.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine)(PMT)-modified glassy carbon electrode(GCE) to form a nano-Au/PMT composite-modified GCE(nano-Au/PMT/GCE).Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode.The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine(DA) and uric acid(UA) in phosphate buffer solution(pH = 7.00).Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0 ×10–8 to 10–6 mol/L for DA and 7.0 × 10–8 to 10–6 mol/L for UA.The detection limits were 3.7 × 10–8mol/L for DA and 4.5 × 10–8 mol/L for UA at a signal-to-noise ratio of 3.According to our experimental results,nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

15.
Copper hydroxyphosphate@metal-organic frameworks/multi-wall carbon nanotube composites (CHP@Cu3 (BTC)2 /MWCNTs)were prepared by a new in-situ template method and then an electrochemical sensor was developed based on the composites. The crystal structure and morphology of the material were characterized by X-ray diffraction and scanning electron microscope. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical catalytic performance,and the determination conditions were optimized. The rapid and sensitive detection of chlorphenamine maleate was realized. There was a good linear relationship between the oxidation peak current and concentration of chlorphenamine maleate in the ranges from 5 to 100 µμmol/L and from 150 to 800 µμmol/L,and the linear equations were as Ipa (µμA)=0.1559c(µμmol/L)-0.3533 (R2 =0.9973)and Ipa (µμA)=0.02328c(µμmol/L)+16.63(R2 =0.9594),and the detection limit was 1.67 µμmol/L. The recoveries of the actual drug ranged from 91.0% to 109.1%. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

16.
Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polymer matrix were studied by scanning electron microscope(SEM)and optical microscope(OM)observations,respectively. The differences in the positive temperature coefficient(PTC)effects of the composites were mainly attributed to inter-fiber contact ability.The elimination of the negative temperature coefficient(NTC)effect for CF/PVDF composite was because of an increase in the viscosity of the polymer matrix.With the same filler content,CF could be more effective,to eliminate the NTC effect when compared with GF.Addition of 2%CF(mass fraction)in the PVDF composite with 7%GF(mass fraction)could effectively eliminate the NTC phenomenon of the composite.  相似文献   

17.
A hybrid membrane consisted of aminated graphene and Ag nanoparticles(Ag NPs) was prepared on the surface of glassy carbon electrode(GCE) by cyclic voltammetry(CV) with aminated graphene(GR-NH2) as matrix for immobilizing Ag NPs.The morphology and electrochemical properties of this hybrid membrane were characterized by scanning electron microscopy(SEM) and CV,respectively,and on this membrane,the voltammetric behaviors of epinephrine(EP) were studied in detail.The membrane exhibited excellent eletro-catalytic activities for the redox of EP,and could resolve the electrochemical response of EP and uric acid(UA) into two oxidation peaks.The peak current of EP was linear with its concentration in the ranges of 0.916-18.3 μmol/L and 18.3-184 μmol/L.The detection limit was 2.0 nmol/L(S/N=3).The proposed modified electrode retained the advantages of easy fabrication,high sensitivity and good repeatability for the determination of EP.  相似文献   

18.
In this study,the disposable facial tissues derived carbon aerogels(DFTs-CAs)were synthesized using disposable facial tissues as the raw material for fabricating a sensitive amperometric ascorbic acid(AA)sensor.The experimental results indicated that compared to glassy carbon electrode(GCE)and the popular carbon nanotubes modified GCE(CNTs/GCE),DFTs-CAs modified GCE(DFTs-CAs/GCE)exhibited better electrocatalytic activity(i.e.,lower peak potential and higher peak current)for AA electrooxidation and higher analytical performance for AA determination(i.e.,wider linear range,higher sensitivity and lower detection limit),which could be most likely due to the high density of defective sites and large specific surface area of DFTs-CAs.Especially,the DFTs-CAs/GCE was used for evaluating the AA level in real samples(i.e.,medical injection dose,vitamin C tablets,fresh orange juice and human urine)and the results are satisfactory.  相似文献   

19.
Ru and Pd (2 wt%) loaded on pure and on Ndoped carbon nanotubes (NCNTs) were prepared and tested using the isopropyl alcohol decomposition reaction as probe reaction. The presence of nitrogen functionalities (pyridinic, pyrrolic, and quaternary nitrogen) on the nitrogen doped support induced a higher metal dispersion: Pd/NCNT (1.8 nm) Pd/CNT (4.9 nm), and Ru/NCNT (2.4 nm) Ru/CNT (3.0 nm). The catalytic activity of the supports was determined first. Isopropyl alcohol conversion produces acetone on CNTs while on NCNTs it led to both dehydration and dehydrogenation products. At 210 °C and in the presence of air, the isopropyl alcohol conversion was higher on the NCNTs (25%) than on the CNTs (11%). The Pd loaded catalysts were more active and more selective than the Ru ones. At 115 °C, the Pd catalysts were 100% selective towards acetone for a conversion of 100%, whereas the Ru catalysts led to dehydration and dehydrogenation products. The nitrogen doping induced the appearance of redox properties when oxygen is present in the reaction mixture.  相似文献   

20.
LaFeO3 perovskite supported Ni and Ni-Fe catalysts were prepared and applied to methanation reaction of syngas.Two preparation methods were employed.One was one-step citrate complexing method,and the other was a two step method using citrate complexing method to produce LaFeO3 and followed by loading nickel oxide on it with impregnation.The structure evolution of the sample as prepared was investigated by XRD,TPR and TEM techniques.For the former,the chemical composites of the calcined sample are NiO-Fe2O3/LaFe1-xNix O3.After reduction and reaction of CO methanation,its composites convert to Fe-Ni@Ni/LaFeO3-La2O2CO3,in which Fe-Ni@Ni is metal particles in nano-size composed of nickel core and Fe-Ni alloy shell.For the latter,the chemical composites of the calcined sample are NiO/LaFeO3; and after reduction and reaction of CO methanation,its chemical composites change to Ni/LaFeO3.Ni/LaFeO3 catalyst is a little more active, while Fe-Ni@Ni/LaFeO3-La2O2CO3 is much more stable and shows very good resistance to carbon deposition.In this work it is aimed to show that the structure and composites of the catalysts can be tailored using perovskite-type oxide as precursor prepared with different methods and conditions.Therefore,it is a promising route to prepare supported bi-metal catalysts in nano-size for a lot of metals with desired catalytic performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号