首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Pyrrolidine-amide oligonucleotide mimics (POMs) exhibit promising properties for potential applications, including in vivo DNA and RNA targeting, diagnostics and bioanalysis. Before POMs can be evaluated in these applications it is first necessary to synthesise and establish the properties of fully modified oligomers, with biologically relevant mixed sequences. Accordingly, Boc-Z-protected thyminyl, adeninyl and cytosinyl POM monomers were prepared and used in the first successful solid phase synthesis of a mixed sequence POM, Lys-TCACAACTT-NH2. UV thermal denaturation studies revealed that the POM oligomer is capable of hybridising with sequence selectivity to both complementary parallel and antiparallel RNA and DNA strands. Whilst the duplex melting temperatures (Tm) were higher than the corresponding duplexes formed with isosequential PNA, DNA and RNA oligomers the rates of association/dissociation of the mixed sequence POM with DNA/RNA targets were noticeably slower.  相似文献   

2.
By chemically modifying or replacing the backbone of oligonucleotides it is possible to modulate the DNA and RNA recognition properties and fine-tune the physiochemical properties of oligomers. This is important because it challenges our understanding of natural nucleic acid structural and recognition properties and can lead to nucleic acid mimics with a wide range of applications in nucleic acid targeting, analysis or diagnostics. In this paper we describe the solid phase synthesis of pyrrolidine-amide oligonucleotide mimics (POMs) using Fmoc-peptide chemistry. This required the synthesis of adeninyl, cytosinyl, thyminyl and guaninyl pyrrolidine monomers, with Fmoc- and standard acyl-protecting groups on the exocyclic amino groups and nucleobases respectively. These monomers were used to synthesise several thyminyl and adeninyl POM pentamers, with modest coupling efficiency. The pentamers were purified by RP-HPLC, characterised by mass spectrometry and their DNA and RNA binding properties were investigated using UV thermal denaturation/renaturation experiments. This revealed that all the pentamers exhibit strong affinity for complementary nucleic acids. The further evaluation of longer mixed-sequence POMs is described in a second accompanying paper (R. J. Worthington et al., Org. Biomol. Chem., 2006, DOI: 10.1039/b613386j).  相似文献   

3.
Previously we introduced the positively charged pyrrolidine-amide oligonucleotide mimics (POM), which possess a pyrrolidine ring and amide linkage in place of the sugar-phosphodiester backbone of natural nucleic acids. Short POM homo-oligomers have shown promising DNA and RNA recognition properties. However, to better understand the properties of POM and to assess their potential for use as modulators of gene expression and bioanalytical or diagnostic tools, more biologically relevant, longer, mixed-sequence oligomers need to be studied. In light of this, several mixed-sequence POM oligomers were synthesised, along with fluorescently labelled POM oligomers and a POM-peptide conjugate. UV thermal denaturation showed that mixed-sequence POMs hybridise to DNA and RNA with high affinity but slow rates of association and dissociation. The sequence specificity, influence of terminal amino acids, and the effect of pH and ionic strength on the DNA and RNA hybridisation properties of POM were extensively investigated. In addition, isothermal titration calorimetry (ITC) was used to investigate the thermodynamic parameters of the binding of a POM-peptide conjugate to DNA. Cellular uptake experiments have also shown that a fluorescently labelled POM oligomer is taken up into HeLa cells. These findings demonstrate that POM has the potential for use in a variety of applications, alongside other modified nucleic acids developed to date, such as peptide nucleic acids (PNA) and phosphoramidate morpholino oligomers (PMO).  相似文献   

4.
Pyrrolidine-amide oligonucleotide mimics (POM) 1 were designed to be stereochemically and conformationally similar to natural nucleic acids, but with an oppositely charged, cationic backbone. Molecular modelling reveals that the lowest energy conformation of a thymidyl-POM monomer is similar to the conformation adopted by ribonucleosides. An efficient solution phase synthesis of the thymidyl POM oligomers has been developed, using both N-alkylation and acylation coupling strategies. 1H NMR spectroscopy confirmed that the highly water soluble thymidyl-dimer, T2-POM, preferentially adopts both a configuration about the pyrrolidine N-atom and an overall conformation in D2O that are very similar to a typical C3'-endo nucleotide in RNA. In addition the nucleic acid hybridisation properties of a thymidyl-pentamer, T5-POM, with an N-terminal phthalimide group were evaluated using both UV spectroscopy and surface plasmon resonance (SPR). It was found that T5-POM exhibits very high affinity for complementary ssDNA and RNA, similar to that of a T5-PNA oligomer. SPR experiments also showed that T5-POM binds with high sequence fidelity to ssDNA under near physiological conditions. In addition, it was found possible to attenuate the binding affinity of T5-POM to ssDNA and RNA by varying both the ionic strength and pH. However, the most striking feature exhibited by T5-POM is an unprecedented kinetic binding selectivity for ssRNA over DNA.  相似文献   

5.
Chimeric constructs were synthesized based on oligoribonucleotides modified at the 2"-position of the ribose (2"-O-tetrahydropyranyl- or 2"-O-methyl-) and at the 3"-terminus of the oligonucleotide chain (terminal 3"—3" internucleotide linkage), which are complementary to a region of MDR 1 mRNA. A comparative study of the properties of these chimeric constructs was performed. The chimeric oligomers with the modified 3"-terminus are characterized by high stability with respect to 3"-exonucleases, form stable complementary complexes with RNA, and can activate RNase H in a duplex with RNA.  相似文献   

6.
Novel oligonucleotide analogues built from isonucleosides were synthesized by the phosphoramidite approach on an automated DNA synthesizer. The phosphoramidite building blocks were synthesized by phosphitylation of the corresponding protected isonucleosides. The oligonucleotide analogues C – G containing the isonucleoside 1 – 3 were studied with respect to their hybridization properties and enzymatic stability. The oligomers bearing an isonucleoside at the end of the strands all proved stable towards snake-venom phosphodiesterase, but only the oligomers D – G exhibit acceptable duplex stability when hybridized with complementary d(A14).  相似文献   

7.
Aromatic peptide nucleic acid (APNA) monomers containing N-(2-aminobenzyl)-glycine, N-(2-aminobenzyl)-(R)- or -(S)-alanine, and N-(2-aminobenzyl)-beta-alanine moieties as part of their backbone were synthesized. These novel analogues were incorporated as a single "point mutation" in PNA hexamers, and their physicochemical properties were investigated by UV thermal denaturation and CD experiments. Destabilization in triplex formation between the PNA-APNA chimeras and complementary DNA or RNA oligomers was observed, as compared to the PNA control. The APNA monomer composed of the N-(2-aminobenzyl)-glycine backbone led to the smallest decrease in the thermal stability of the triplexes formed with DNA and RNA, while maintaining selectivity for base-pairing recognition. Since the PNA-APNA chimeras are more lipophilic than the corresponding PNA homopolymers, these oligomers may also exhibit better cell membrane permeability properties.  相似文献   

8.
We have demonstrated that a new type of circular dumbbell RNA/DNA chimeric oligonucleotide (CDRDON) with two closed nucleotide or alkyl loop structures (hexa‐ethylene glycol) inhibits influenza virus A replication in MDCK cells. The enzymatic synthesis of circular dumbbell RNA/DNA chimeric oligonucleotides was achieved by enzymatically ligating a self‐complementary phosphorylated oligonucleotide with T4‐RNA ligase. The CDRDON‐Al, with two closed alkyl loop structures, showed higher nuclease resistance, hybridization, and cellular uptake than the anti‐S‐ODN and the CDRDON, with two closed nucleotide hairpin‐loop structures. The circular dumbbell RNA/DNA chimeric oligonucleotide (CDRDON‐Al‐PB2‐as), containing an AUG initiation‐codon sequence as the target of PB2, showed highly inhibitory effects on influenza A virus RNA expression. The limited toxicity of unmodified phosphodiester oligonucleotides and the sequence‐specific binding to target mRNA indicate that circular dumbbell RNA/DNA chimeric phosphodiester oligonucleotides can be used with intact cells, and may prevent viral replication in culture.  相似文献   

9.
We report the layer-by-layer (LbL) preparation of multilayered thin films that consist solely of DNA. The properties of the films were varied by assembling the layers from different oligonucleotide building blocks, which are composed of repeating homopolymeric units of nucleotides [adenosine (A), cytosine (C), guanine (G), and thymidine (T)] or "random" sequences. Films assembled from oligonucleotides with a single complementary unit did not show continual layer buildup. To form a repeating multilayer system, it was necessary for single-stranded DNA to be available for subsequent layers to hybridize. By using oligonucleotides with multiple nucleotide units, multilayer films were successfully assembled. We demonstrate that the thickness and swellability of the films can be controlled by the extent of hydrogen bonding (the G/C content of the oligonucleotide) and orientation of the oligomers. We have examined the stability and swellability of the films in solutions of varying salt concentration as well as in a denaturing urea solution. Stable, hollow DNA capsules were also formed by preparing the films on sacrificial colloidal templates, followed by removal of the core. The assembly of propagating structures through DNA hybridization paves the way for the engineering of DNA films with tailored composition, structure, and permeability, making them likely to find application in drug/gene delivery and biomolecular sensing.  相似文献   

10.
Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.  相似文献   

11.
The recognition of cellular nucleic acids by synthetic oligonucleotides is a versatile strategy for regulating biological processes. The vast majority of published studies have focused on antisense oligonucleotides that target mRNA, but it is also possible to design antigene oligonucleotides that are complementary to chromosomal DNA. Antigene oligomers could be used to inhibit the expression of any gene or analyze promoter structure and the mechanisms governing gene regulation. Other potential applications of antigene oligomers include activation of expression of chosen genes or the introduction of mutations to correct genetic disease. Peptide nucleic acid (PNA) is a nonionic DNA/RNA mimic that possesses outstanding potential for recognition of duplex DNA. Here we describe properties of PNAs and the challenges for their development as robust antigene agents.  相似文献   

12.
We recently described the synthesis and helix assembly properties of expanded DNA (xDNA), which contains base pairs 2.4 A larger than natural DNA pairs. This designed genetic set is under study with the goals of mimicking the functions of the natural DNA-based genetic system and of developing useful research tools. Here, we study the fluorescence properties of the four expanded bases of xDNA (xA, xC, xG, xT) and evaluate how their emission varies with changes in oligomer length, composition, and hybridization. Experiments were carried out with short oligomers of xDNA nucleosides conjugated to a DNA oligonucleotide, and we investigated the effects of hybridizing these fluorescent oligomers to short complementary DNAs with varied bases opposite the xDNA bases. As monomer nucleosides, the xDNA bases absorb light in two bands: one at approximately 260 nm (similar to DNA) and one at longer wavelength ( approximately 330 nm). All are efficient violet-blue fluorophores with emission maxima at approximately 380-410 nm and quantum yields (Phifl) of 0.30-0.52. Short homo-oligomers of the xDNA bases (length 1-4 monomers) showed moderate self-quenching except xC, which showed enhancement of Phifl with increasing length. Interestingly, multimers of xA emitted at longer wavelengths (520 nm) as an apparent excimer. Hybridization of an oligonucleotide to the DNA adjacent to the xDNA bases (with the xDNA portion overhanging) resulted in no change in fluorescence. However, addition of one, two, or more DNA bases in these duplexes opposite the xDNA portion resulted in a number of significant fluorescence responses, including wavelength shifts, enhancements, or quenching. The strongest responses were the enhancement of (xG)n emission by hybridization of one or more adenines opposite them, and the quenching of (xT)n and (xC)n emission by guanines opposite. The data suggest multiple ways in which the xDNA bases, both alone and in oligomers, may be useful as tools in biophysical analysis and biotechnological applications.  相似文献   

13.
DNA monomers and oligomers are currently showing great promise as building blocks for supramolecular arrays that can self-assemble in a fashion preprogrammed by the base pairing code. The design and build-up of hybrid DNA/amphiphilic self-assemblies can expand the range of possible architectures and enhance the selectivity toward a well-specified geometry. We report on the self-assembly properties in aqueous solution of a cholesteryl-tetraethylenglycol single stranded 18-mer oligonucleotide (ON 1TEG-Chol) and on its spontaneous insertion in fluid phospholipid membranes. Up to 500 units of these lipophilic ss-oligonucleotides can be incorporated in the outer leaflet of 350 A radius POPC vesicle. The insertion and hybridization with the complementary oligonucleotide are monitored through light scattering as an increase of hydrodynamic thickness, which is interpreted in terms of average distance between anchoring sites. The conformation of the ss-oligonucleotidic portion is strongly dependent on surface coverage, passing from a quasi-random coil to a more rigid configuration, as concentration increases. Interestingly, conformational details affect in a straightforward fashion the hybridization kinetics. Liposomes with single- and double-strand decorations remain stable within the experimental time window (about one week). The structure represents an example of successful and stable amphiphile/DNA supramolecular hybrid, where a DNA guest is held in a membrane by hydrophobic interactions. The lipophilic oligonucleotide under investigation is therefore a suitable building block that can effectively serve as a hydrophobic anchor in the fluid bilayer to assemble supramolecular constructs based on the DNA digital code.  相似文献   

14.
分子信标技术   总被引:1,自引:0,他引:1  
分子信标是一种高灵敏度、高特异性的新型荧光核酸探针。它在与互补DNA/RNA靶序列杂交时放出荧光。本文结合本实验室的研究,从分子信标的结构、性质、应用及发展等进行了介绍。  相似文献   

15.
RNA is an important target for drug discovery efforts. Several clinically used aminoglycoside antibiotics bind to bacterial rRNA and inhibit protein synthesis. Aminoglycosides, however, are losing efficacy due to their inherent toxicity and the increase in antibiotic resistance. Targeting of other RNAs is also becoming more attractive thanks to the discovery of new potential RNA drug targets through genome sequencing and biochemical efforts. Identification of new compounds that target RNA is therefore urgent, and we report here on the development of rapid screening methods to probe binding of low molecular weight ligands to proteins and RNAs. A series of aminoglycosides has been immobilized onto glass microscope slides, and binding to proteins and RNAs has been detected by fluorescence. Construction and analysis of the arrays is completed by standard DNA genechip technology. Binding of immobilized aminoglycosides to proteins that are models for study of aminoglycoside toxicity (DNA polymerase and phospholipase C), small RNA oligonucleotide mimics of aminoglycoside binding sites in the ribosome (rRNA A-site mimics), and a large (approximately 400 nucleotide) group I ribozyme RNA is detected. The ability to screen large RNAs alleviates many complications associated with binding experiments that use isolated truncated regions from larger RNAs. These studies lay the foundation for rapid identification of small organic ligands from combinatorial libraries that exhibit strong and selective RNA binding while displaying decreased affinity to toxicity-causing proteins.  相似文献   

16.
Hybridization probes are often inefficient in the analysis of single‐stranded DNA or RNA that are folded in stable secondary structures. A molecular beacon (MB) probe is a short DNA hairpin with a fluorophore and a quencher attached to opposite sides of the oligonucleotide. The probe is widely used in real‐time analysis of specific DNA and RNA sequences. This study demonstrates how a conventional MB probe can be used for the analysis of nucleic acids that form very stable (Tm>80 °C) hairpin structures. Here we demonstrate that the MB probe is not efficient in direct analysis of secondary structure‐folded analytes, whereas a MB‐based tricomponent probe is suitable for these purposes. The tricomponent probe takes advantage of two oligonucleotide adaptor strands f and m. Each adaptor strand contains a fragment complementary to the analyte and a fragment complementary to a MB probe. In the presence of a specific analyte, the two adaptor strands hybridize to the analyte and the MB probe, thus forming a quadripartite complex. DNA strand f binds to the analyte with high affinity and unwinds its secondary structure. Strand m forms a stable complex only with the fully complementary analyte. The MB probe fluorescently reports the formation of the quadripartite associate. It was demonstrated that the DNA analytes folded in hairpin structures with stems containing 5, 6, 7, 8, 9, 11, or 13 base pairs can be detected in real time with the limit of detection (LOD) lying in the nanomolar range. The stability of the stem region in the DNA analyte did not affect the LOD. Analytes containing single base substitutions in the stem or in the loop positions were discriminated from the fully complementary DNA at room temperature. The tricomponent probe promises to simplify nucleic acid analysis at ambient temperatures in such applications as in vivo RNA monitoring, detection of pathogens, and single nucleotide polymorphism (SNP) genotyping by DNA microarrays.  相似文献   

17.
The syntheses of monomeric nucleosides and 3'-O-phosphoramidite building blocks en route to alpha-L-ribo-configured locked nucleic acids (alpha-L-LNA), composed entirely of alpha-L-LNA monomers (alpha-L-ribo configuration) or of a mixture of alpha-L-LNA and DNA monomers (beta-D-ribo configuration), are described and the alpha-L-LNA oligomers are studied. Bicyclic 5-methylcytosin-1-yl and adenine-9-yl nucleoside derivatives have been prepared and the phosphoramidite approach has been used for the automated oligomerization leading to alpha-L-LNA oligomers. Binding studies revealed very efficient recognition of single-stranded DNA and RNA target oligonucleotide strands. Thus, stereoirregular alpha-L-LNA 11-mers containing a mixture of alpha-L-LNA monomers and DNA monomers ("mix-mer alpha-L-LNA") were shown to display DeltaT(m) values of +1 to +3 degrees C per modification toward DNA and +4 to +5 degrees C toward RNA when compared with the corresponding unmodified DNA x DNA and DNA x RNA reference duplexes. The corresponding DeltaT(m) values per modification for the stereoregular fully modified alpha-L-LNA were determined to be +4 degrees C (against DNA) and +5 degrees C (against RNA). 11-Mer alpha-L-LNAs (mix-mer alpha- L-LNA or fully modified alpha- L-LNA) were shown in vitro to be significantly stabilized toward 3'-exonucleolytic degradation. A duplex formed between RNA and either mix-mer alpha-L-LNA or fully modified alpha-L-LNA induced in vitro Escherichia coli RNase H-mediated cleavage, albeit very slow, of the RNA targets at high enzyme concentrations.  相似文献   

18.
Altritol nucleic acids (ANAs) are RNA analogues with a phosphorylated D-altritol backbone. The nucleobase is attached at the 2-(S)-position of the carbohydrate moiety. We report that ANA oligomers are superior to the corresponding DNA, RNA, and HNA (hexitol nucleic acid) in supporting efficient nonenzymatic template-directed synthesis of complementary RNAs from nucleoside-5'-phosphoro-2-methyl imidazolides. Activated ANA and HNA monomers do not oligomerize efficiently on DNA, RNA, HNA, or ANA templates.  相似文献   

19.
The design and facile conversion of naturally occurring 4-hydroxyproline to all four diastereomers of thymine pyrrolidine PNA monomer, (2R,4S)-adenine, -guanine and -cytosine monomers and their incorporation into duplex forming PNA oligomers is reported. The interesting results of the hybridization studies with complementary DNA/RNA sequences in either parallel or antiparallel orientation reveal the stereochemistry-dependent DNA vs. RNA discriminations and parallel/antiparallel orientation selectivity.  相似文献   

20.
Peptide nucleic acids (PNAs) are oligonucleotide mimics containing a pseudopeptide chain, which are able to bind complementary DNA tracts with high affinity and selectivity. Two mixed-sequence PNA undecamers (1 and 2) were synthesized and their double-stranded adducts with the complementary oligonucleotides (3 and 4) were revealed by the appearance of the corresponding peak in anion-exchange HPLC. A DEAE column was used and elution was performed with aqueous Tris buffer (pH 8) and an ionic strength gradient (0-0.5 M NaCl). The same effect was not observed with non-complementary oligonucleotides. The stability of the PNA-DNA adducts under the conditions used in the chromatographic system was studied as a function of temperature. Furthermore, in competition experiments double-stranded oligonucleotides were challenged by a PNA complementary to one strand: the formation of the PNA-DNA hybrid and the displacement of the non-complementary strand were observed with high specificity. The results suggest a possible use of ion-exchange HPLC for studying PNA-DNA interactions, and indicate the efficiency of PNA probes in the chromatographic analysis of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号