首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of protecting fluoroplastic coatings at varied composition of the reaction mixture was studied. Introduction of quarternary pyridinium poly salt and various pigments into the polytrifluorochloroethylene composition allows variation of the process parameters of coating deposition on the cathode and preparation of modified fluoroplastic coatings with good anticorrosive properties.  相似文献   

2.
Silica nanoparticles are used in various applications including catalysts, paints and coatings. To reach an optimal performance via stability and functionality, in most cases, the surface properties of the particles are altered using complex procedures. Here we describe a simple method for surface modification of silica nanoparticles (SNP) using sequential adsorption of oppositely charged components. First, the SNPs were made cationic by adsorption of a cationic polyelectrolyte. Poly(allylamine hydrochloride) (PAH) and polyethyleneimine (PEI) were chosen as polycations to investigate the difference between a linear and a branched polyelectrolyte. Next, the dispersion of cationic SNPs was combined with an anionic alkyl ketene dimer (AKD) emulsion. Using this approach cationic, hydrophobic silica particle dispersions were produced. Dynamic light scattering, contact angle measurements and atomic force microscopy (AFM) were used for analyzing the particle and coating layer properties. The chosen polyelectrolyte affected the structure of the dispersion. The layer build-up was studied in detail using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and layer properties of the cationic polyelectrolytes adsorbed on silica as well as the affinity of AKD to this layer were explored. The application possibilities of the modified particle dispersions were demonstrated by preparing paper and silica surfaces with tailored properties, such as elevated surface hydrophobicity, using an ultrathin coating layer.  相似文献   

3.
Peculiarities of the formation of polyelectrolyte complexes based on cationic and anionic copolymers of acrylamide having different macromolecule charge densities on the surfaces of kaolin particles in highly concentrated salt solution are investigated. The interactions of the copolymers with the clay particle surface and with each other are studied by electrokinetic and IR spectroscopy methods. The rheological properties of kaolin suspensions are investigated in a salt solution in the presence of the polyelectrolytes. The flocculation ability of the polyelectrolytes and their binary mixtures with respect to clay-salt dispersion is estimated. The mechanism for the formation of polyelectrolyte complexes on the surface of clay particles is discussed. It is shown that the complexation of oppositely charged polyelectrolytes on the surfaces of clay particles intensifies the flocculation of clay-salt dispersions.  相似文献   

4.
Summary: Aqueous acrylic dispersions of hydroxy-functionalised copolymer microgel particles crosslinked with allyl methacrylate were synthesized by emulsion polymerization. The microgels were investigated as reactive polymer fillers in mixtures with a water-borne film-forming dispersion. Properties of coatings cast from mixtures of aqueous dispersion of hard microgel particles and film-forming water-borne dispersion were investigated. The swelling behaviour of microgels in selected solvents (aliphatic ketones) as a function of microgel composition is discussed as well. It was found that the swelling ability of microgels decreased with growing degree of crosslinking. Microgels comprising copolymerised butyl methacrylate swelled less in aliphatic ketones than microgels without this comonomer. This work was focused mainly on the influence of microgels incorporated in the commercial solvent-borne acrylic binders on the properties of coatings. It was shown that the application of microgels that were redispersed in acetone did not affect the surface appearance and transparency of coatings. Moreover, the presence of microgel network precursors accelerated film curing at ambient temperature and improved the final hardness of coatings.  相似文献   

5.
The surface properties of PE with bilayer and multilayer coatings based on polyelectrolyte complexes of the biospecific modified N-vinylpyrrolidone-maleic acid copolymer with chitosan, amphiphilic chitosan, or albumin have been investigated by atomic force microscopy, multiple attenuated total reflection spectroscopy, X-ray photoelectron spectroscopy, and goniometry. The copolymer of N-vinylpyrrolidone and maleic acid contains affine ligands to plasminogen—fragments of α-amino-bonded lysine—and imparts thromboresistant properties to the surface being modified. The surface morphology and the size of particles of deposited intermediate layers of chitosan or albumin differ from those of the bilayer (multilayer) coatings containing an additional external layer of the biospecific copolymer. The deposition of the multilayer polymeric coatings promotes a more thorough coverage of the protected surface. Characteristic absorption bands that demonstrate the presence of the modifying polymers on the PE surface have been revealed; this fact is also confirmed by the X-ray photoelectron spectroscopy data on the atomic composition of the analyzed surface. A significant increase in the hydrophilicity of the modified surface is established by the contact angle technique.  相似文献   

6.
The effect of a low-molecular-mass salt on the properties of interpolyelectrolyte complexes formed as a result of interactions between poly(diallyldimethylammonium chloride) and copolymers of maleic acid with propylene or α-methylstyrene in their salt containing non-stoichiometric mixtures has been studied. Properties of such interpolyelectrolyte complexes were found to be determined by the chemical nature of the polyelectrolytes and by the salt concentration. The effect of salt on the surface modification of silica particles via their interactions with interpolyelectrolyte complexes has been examined. Two different ways of the surface modification of silica particles were used: (i) silica particles were contacted with previously prepared interpolyelectrolyte complexes and (ii) silica particles were contacted with cationic polyelectrolyte at first and then anionic polyelectrolyte was added. The efficiency of the surface modification was shown to be also dependent on the salt concentration and the chemical nature of polyelectrolytes. Turbidimetry, quasi-elastic light scattering, laser microelectrophoresis, and polyelectrolyte titration were used to characterize studied systems.  相似文献   

7.
The composition and properties of mother liquor from production of F4D fluoroplastic were studied. Nickel-fluoroplastic cathodic and aluminum oxide-fluoroplastic anodic composite coatings were prepared. Aluminum oxide-fluoroplastic composite coatings were obtained by thermal treatment of aluminum oxide coatings impregnated with the mother liquor.  相似文献   

8.
Polytetrafluoroethylene (PTFE) coatings were prepared on Si and acrylonitrile‐butadiene rubber substrates by low‐energy electron beam dispersion. The effects of substrate nature, distance of target to substrate (dts) and coatings thickness on the surface morphology, structure, and tribological properties of the coatings were investigated. The results showed that substrate nature affects the shape and size distribution of surface conglomerations of PTFE coatings due to the interaction process of active dispersion particles with underlying polymer layer. Surface energy of PTFE coatings decreases first with the coatings thickness increases to 1.25 µm and then slowly increases with the thickness. Structure defects (pore, interstice, and so on) in the coatings increase with the thickness increases but reduce significantly with the dts increases. PTFE coating prepared at the dts of 20 cm had a higher intensity of the amorphous absorption bands. Friction experiment indicated that the destroyed area of the coatings in the friction region decreases with increases the coatings thickness but increases with the dts. The rubber modified by PTFE coatings with spherical structure possesses a higher stability in the friction process and a lower coefficient of friction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Photocatalytic coatings for environmental applications   总被引:3,自引:0,他引:3  
A series of nano- and micronparticle-grade anatase and rutile titanium dioxide pigments have been prepared with various densities of surface treatments, particle size and surface area. Their photocatalytic activites have been determined in a series of paint films by FTIR, chalking, color, gloss change and weight loss after artifical weathering. The pigments have also been examined by rapid assessment methodologies using photodielectric microwave spectroscopy, 2-propanol oxidation and hydroxyl analysis. The microwave response under light and dark cycles provides an extended timescale probe of charge-carrier dynamics in the pigments. Pigment particle size, surface area and properties clearly play an important role in dispersion and any polymer-pigment interactions. Photooxidation studies on several types of paint films show a clear demarcation between nanoparticle- and pigmentary-grade titanium dioxide, with the former being more active because of their greater degree of catalytic surface activity. The photosensitivity of titanium dioxide is considered to arise from localized sites on the crystal surface (i.e. acidic OH), and occupation of these sites by surface treatments inhibits photoreduction of the pigment by ultraviolet radiation; hence, the destructive oxidation of the binder is inhibited. Coatings containing 2-5% by weight alumina or alumina and silica are satisfactory for general-purpose paints. If greater resistance to weathering is desired, the pigments are coated more heavily to about 7-10% weight. The coating can consist of a combination of several materials, e.g. alumina, silica, zirconia, aluminum phosphates of other metals. For example, the presence of hydrous alumina particles lowers van der Waals forces between pigments particles by several orders of magnitude, decreasing particle-particle attractions. Hydrous aluminum oxide phases appear to improve dispersibility more effectively than most of the other hydroxides and oxides. Coated nanoparticles are shown to exhibit effective light stabilization in various water- and oil-based paint media in comparison with conventional organic stabilizers. Hindered piperidine stabilizers are shown to provide no additional benefits in this regard, often exhibiting strong antagonism. The use of photocatalytic titania nanoparticles in the development of self-cleaning paints and microbiological surfaces is also demonstrated in this study. In the former case, surface erosion is shown to be controlled by varying the ratio of admixture of durable pigmentary-grade rutile (heavily coated) and a catalytic-grade anatase nanoparticle. For environmental applications in the development of coatings for destroying atmospheric pollutants such as nitrogen oxide gases (NO(X)), stable substrates are developed with photocatalytic nanoparticle-grade anatase. In this study, porosity of the coatings through calcium carbonate doping is shown to be crucial in the control of the effective destruction of atmospheric NO(X) gases. For the development of microbiological substrates for the destruction of harmful bacteria, effective nanoparticle anatase titania is shown to be important, with hydrated high surface area particles giving the greatest activity.  相似文献   

10.
The kinetics of the adsorption of a cationic polymer flocculant onto negatively charged polystyrene latex (PSL) particles were measured by means of electrophoresis as a function of the molecular weight of the polyelectrolyte and the ionic strength of the solution. In the experiment, the dispersion of bare PSL particles was mixed with a polyelectrolyte solution by means of end-over-end rotation in which the mixing intensity was evaluated in terms of the collision frequency between the colloidal particles. The rate of electrophoretic mobility of a PSL particle, which remained as a singlet, was measured against the mixing steps, which was equivalent to the time elapsed after the onset of flocculation. The shape of the kinetic curves is typical: a linear increase for a short period followed by a plateau, implying the saturation of the colloidal surface by the adsorbed polyelectrolyte. In the case of low ionic strength, the plateau value was dependent on the molecular weight of the polyelectrolyte. That is, a lower plateau value was detected when the molecular weight of the polyelectrolyte was smaller and its concentration was lower. However, the amount of adsorption was kinetically controlled only for the case of higher molecular weight. In the case of high ionic strength, the plateau value of electrophoresis was constant, regardless of the polyelectrolyte concentration and molecular weight. These data will ultimately be useful in further analysis of the flocculation behavior of colloidal particles with a polyelectrolyte.  相似文献   

11.
N,N-Dimethylformamide (DMF)/H2O mixtures were used as solvents to fabricate azo polyelectrolyte (PEAPH)/poly(diallyldimethyl ammonium chloride)(PDAC) self-assembled multilayers with the layer-by-layer electrostatic adsorption technique. PEAPH is a copolymer of acrylic acid and azobenzene-containing acrylate. The effect of the ratio of DMF to water on the multilayer growth, structure and surface morphology was studied in some details. Results show that DMF/H2O mixtures are proper media for PEAPH/PDAC multilayer fabrication. The ratio of DMF to water in the mixture has significant influence on the multilayer structure and surface morphology. With the increase of DMF content, the multilayer thickness has a better linear growth relationship with the bilayer number, and the multilayer surface becomes smoother. Moreover, azo chromophores show less H-aggregation when the multilayers are fabricated from DMF/H2O mixtures with higher DMF contents. These studies demonstrate that using organic solvent and water mixtures is an effective way to control the multilayer construction by adjusting the media properties. This method can be applied to multilayer fabrication of other water-insoluble polyelectrolytes. __________ Translated from Acta Polymerica Sinica, 2005, (4) (in Chinese)  相似文献   

12.
一种具有可逆光加工特性的偶氮聚电解质的合成与表征   总被引:1,自引:0,他引:1  
合成一种具有可逆光加工特性的偶氮聚电解质(PAA-AZ),用核磁、热分析、紫外-可见光谱、接触角及GPC等手段对其进行了结构和性能表征.PAA-AZ的旋涂膜用线偏振Ar+激光照射一段时间,在原子力显微镜(AFM)下观测其表面,膜表面形成了规整有序纳米尺寸的三维表面图案表面起伏光栅(起伏深度为100nm).用氦氖激光检测了PAA-AZ旋涂膜一级衍射效率与光照时间的关系.  相似文献   

13.
利用静电吸附逐层自组装方法在有机溶剂N,N二甲基甲酰胺(DMF)和H2O的混合介质中制备非水溶性偶氮聚电解质自组装多层膜.研究了DMF和H2O的配比对自组装膜生长、结构与表面形态的影响.结果表明,DMFH2O的混合溶剂是非水溶性偶氮聚电解质自组装的理想介质,二者之间的配比对自组装膜的生长速度,膜的结构以及表面形态均有显著影响.随着混合溶液中DMF含量的升高,自组装膜的生长速度逐渐下降但线形生长关系越来越好,所得自组装膜中偶氮生色团的H聚集程度逐渐下降,而且自组装膜的表面越来越平整.  相似文献   

14.
In order to produce silica/polyelectrolyte hybrid materials the adsorption of the polyelectrolyte poly(vinyl formamide-co-vinyl amine), P(VFA-co-VAm) was investigated. The adsorption of the P(VFA-co-VAm) from an aqueous solution onto silica surface is strongly influenced by the pH value and ionic strength of the aqueous solution, as well as the concentration of polyelectrolyte. The adsorption of the positively charged P(VFA-co-VAm) molecules on the negatively charged silica particles offers a way to control the surface charge properties of the formed hybrid material. Changes in surface charges during the polyelectrolyte adsorption were studied by potentiometric titration and electrokinetic measurements. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte and its chemical structure. The stability of the adsorbed P(VFA-co-VAm) was investigated by extraction experiments and streaming potential measurements. It was shown, that polyelectrolyte layer is instable in an acidic environment. At a low pH value a high number of amino groups are protonated that increases the solubility of the polyelectrolyte chains. The solvatation process is able to overcompensate the attractive electrostatic forces fixing the polyelectrolyte molecules on the substrate material surface. Hence, the polyelectrolyte layer partially undergoes dissolving process.  相似文献   

15.
纳米二氧化硅包覆颜料黄的研究   总被引:3,自引:0,他引:3  
采用静电自组装技术成功地将纳米二氧化硅粒子包覆在颜料黄的表面.研究结果表明,预吸附的聚电解质层数显著影响纳米二氧化硅的吸附量.随着包覆二氧化硅层数的增加,覆盖率逐渐增加,但包覆三层二氧化硅后,覆盖趋于平衡.吸附的纳米二氧化硅不仅可以提高颜料黄的亲水性,而且还能够散射紫外线,尤其是波长小于270nm的紫外线,提高了颜料黄的耐候性,同时又不影响颜料黄本身的颜色.  相似文献   

16.
We report on bulk and surface properties of centrifuged nonstoichiometric polyelectrolyte complex (PEC) dispersions. PECs were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of 0.6 and polymer concentration >/=1 mmol/l. Centrifugation of initial PEC dispersions revealed three phases: supernatant (SUP), coacervate (COAC), and an insoluble precipitate. Mass, turbidity, particle hydrodynamic radii (R(h)), and the titratable charge amount were determined for those phases. The turbid COAC phase consisted of 200-nm nanoparticles and carried 60% of the polymer mass and 20% of the titratable charge amount of the initial PEC dispersion. The SUP phase showed no turbidity and no such nanoparticles, but carried 80% of the initial titratable charge amount, presumably caused by excess polycations. Furthermore, linear dependences of turbidity and R(h) on COAC concentration was observed. COAC adsorption was studied at polyelectrolyte multilayer (PEM) modified silicon surfaces in dependence on both adsorption time and concentration using attenuated total-reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The adsorption data were fitted by the simple Langmuir model. Comparison of COAC particles and polystyrene latices revealed similar adsorption features. SEM and AFM measurements resulted in hemispherically shaped adsorbed COAC particles with coverages >/=25%, whose calculated volumes correlated well with those in dispersion obtained by PCS.  相似文献   

17.
Flake-shaped particles of aluminium are well known in the coatings and printing ink industry as “silver bronze pigments”. For their use in waterborne coatings or outdoor applications, an effective corrosion protection of the highly reactive aluminium surfaces is required. The traditional stabilization techniques for aluminium pigments are based on the addition of corrosion inhibitors or on chromate passivation. This publication presents new developments in the encapsulation of metallic pigments that are based on modern sol-gel techniques. All products are heavy metal-free and provide excellent applicational properties.  相似文献   

18.
The light-scattering properties of coatings based on monodisperse polymeric spheres of two different diameters (ca 0.5 and 1 m) were evaluated from reflectance measurements as a function of the wavelength from 400 to 700 nm. Some of these plastic pigments were hollow and it was noted that these particles gave coatings with a greater light-scattering ability than coatings based on solid particles of a similar size. It was possible to estimate the contribution of the internal pores to the scattering ability of the coating layers by saturating the layers with an oil of a refractive index similar to that of the polymeric pigment particles. A simple model accounting for the scattering provided by the internal pores of the hollow particles is suggested. The agreement between the experimental results and the prediction of the model is fair. It was noted that the light scattering coefficient of the coatings increased when the external diameter of their constituent hollow particles increased from ca 0.5 to 1 m.  相似文献   

19.
Summary: If long polyelectrolyte chains are attached densely to colloidal latex particles, a spherical polyelectrolyte brush results. These spherical polyelectrolytes are dispersed in water and carry a high charge. We demonstrate that these systems can be used to immobilize ions of heavy metals, such as gold, as counter‐ions. Reduction of these ions leads to metallic nanoparticles. In this way the brush layer attached to the surface of the particles becomes a “nanoreactor” that may be used for chemical conversions of the metal ions. We show that the reduction of AuClequation/tex2gif-stack-1.gif ions within these nanoreactors leads to well‐defined and rather monodisperse gold nanoparticles that are attached to the surface of the core. A stable dispersion of polymeric core particles with attached nanoparticles results. All results reported here suggest that chemical reactions of ions immobilized in spherical polyelectrolyte brushes provide a new route to composite particles of inorganic and organic materials.

Transmission electron micrograph of gold particles on a core‐shell system.  相似文献   


20.
通过硅烷偶联剂3-氨丙基三乙氧基硅烷(KH550)改性聚氨酯(PU)/Al-Sm_2O_3复合涂层,从功能特性和力学性能角度系统研究了改性前后涂层自然老化性能的变化规律。结果表明,改性后PU/Al-Sm_2O_3复合涂层的红外发射率对自然老化的稳定性得到明显增强,在同等条件下改性后的涂层发射率要明显低于未改性的涂层发射率。改性后涂层表面的Sm_2O_3颗粒分散更加均匀,对近红外光的吸收强度有所增强,从而使改性后涂层对1.06μm近红外光的反射率要明显低于未改性涂层。改性前后涂层的硬度对自然老化具有良好的稳定性,其硬度可保持在3 H;未改性涂层的附着力和耐冲击强度受自然老化影响明显,但改性后涂层的附着力和耐冲击强度得到明显加强,经自然老化4个月后仍然可保持在1级和50 kg·cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号