首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alcoholysis of soybean isoflavone glucosides by butanol catalyzed by acidic ionic liquids was studied. The effects of the ionic liquid catalyst type, catalyst concentration, reaction time and reaction temperature on glycoside conversions, and aglycons yields were investigated. The optimum reaction conditions are found to be as follows: 0.036 g mL−1 of ionic liquid [BIM]HSO4 as catalyst, reaction temperature at 104±1°C, reaction time of 100 min. Under these optimum reaction conditions near complete conversions of the three kinds of glycosides (daidzin, glycitin and genistin) are obtained. Furthermore, the kinetics parameters for the alcoholysis were estimated. The activation energies of alcoholysis for the three kinds of isoflavone glucosides are 124 kJ mol−1, 67 kJ mol−1 and 115 kJ mol−1, respectively.  相似文献   

2.
3.
The basic kinetic parameters of thermal polymerization of hexafluoropropylene, namely, general rate constants, degree of polymerization, and their temperature and pressure dependences in the range of 230–290 °C and 2–12 kbar (200–1200 MPa) were determined. The activation energy (E act = 132±4 kJ mol−1) and activation volume (ΔV 0 = −27±1 cm3 mol−1) were calculated. The activation energy of thermal initiation of polymerization was estimated. The reaction scheme based on the assumption about a biradical mechanism of polymerization initiation was proposed.  相似文献   

4.
In this work, a kinetic study on the thermal degradation of carbon fibre reinforced epoxy is presented. The degradation is investigated by means of dynamic thermogravimetric analysis (TG) in air and inert atmosphere at heating rates from 0.5 to 20°C min−1 . Curves obtained by TG in air are quite different from those obtained in nitrogen. A three-step loss is observed during dynamic TG in air while mass loss proceeded as a two step process in nitrogen at fast heating rate. To elucidate this difference, a kinetic analysis is carried on. A kinetic model described by the Kissinger method or by the Ozawa method gives the kinetic parameters of the composite decomposition. Apparent activation energy calculated by Kissinger method in oxidative atmosphere for each step is between 40–50 kJ mol−1 upper than E a calculated in inert atmosphere. The thermo-oxidative degradation illustrated by Ozawa method shows a stable apparent activation energy (E a ≈130 kJ mol−1 ) even though the thermal degradation in nitrogen flow presents a maximum E a for 15% mass loss (E a ≈60 kJ mol−1 ). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
It has been found that the modified Zhuravlev equation, [(1−α)−1/3−1]2=ktn, which describes the kinetics of oxidation of V2O4 and V6O13 in the temperature range 820–900 K and in the oxygen pressure range 1.0–20 kPa, can be derived via the assumption that the changes in the observed activation energy result from the changing contributions of the two diffusion processes controlling the reaction rate. The values of the observed activation energy are in the range 160–175 kJ mol−1 for V2O4 and 188–201 kJ mol−1 for V6O13 in the scope of the experimental oxygen pressures and temperatures and conversion degrees of 0.1–0.9. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

7.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

8.
Differential scanning calorimetry was employed to investigate the reaction of diglycidyl ethers of bisphenol A (DGEBA) of mean molecular mass 348–480 Da, with collagen hydrolysate of chrome-tanned leather waste in a solvent-free environment. The reaction leads to biodegradable polymers that might facilitate recycling of plastic parts in products of the automotive and/or aeronautics industry provided with protective films on this basis. The reaction proceeds in a temperature interval of 205–220°C, at temperatures approx. 30–40°C below temperature of thermal degradation of collagen hydrolysate. The found value of reaction enthalpy, 519.19 J g−1 (= 101.24 kJ mol−1 of epoxide groups) corresponds with currently found enthalpy values of the reaction of oxirane ring with amino groups. Reaction heat depends on the composition of reaction mixture (or on mass fraction of diglycidyl ethers in the reaction mixture); proving the dependence of kinetic parameters of the reaction (Arrhenius pre-exponential factor A (min−1) and activation energy E a (kJ mol−1)) did not succeed. Obtained values of kinetic parameters are on a level corresponding to the assumption that reaction kinetics is determined by diffusion.  相似文献   

9.
The kinetics of the reactions between Fe(phen) 3 2+ [phen = tris–(1,10) phenanthroline] and Co(CN)5X3− (X = Cl, Br or I) have been investigated in aqueous acidic solutions at I = 0.1 mol dm−3 (NaCl/HCl). The reactions were carried out at a fixed acid concentration ([H+] = 0.01 mol dm−3) and the second-order rate constants for the reactions at 25 °C were within the range of (0.151–1.117) dm3 mol−1 s−1. Ion-pair constants K ip for these reactions, taking into consideration the protonation of the cobalt complexes, were 5.19 × 104, 3.00 × 102 and 4.02 × 104 mol−1 dm−3 for X = Cl, Br and I, respectively. Activation parameters measured for these systems were as follows: ΔH* (kJ K−1 mol−1) = 94.3 ± 0.6, 97.3 ± 1.0 and 109.1 ± 0.4; ΔS* (J K−1) = 69.1 ± 1.9, 74.9 ± 3.2 and 112.3 ± 1.3; ΔG* (kJ) = 73.7 ± 0.6, 75.0 ± 1.0 and 75.7 ± 0.4; E a (kJ) = 96.9 ± 0.3, 99.8 ± 0.4, and 122.9 ± 0.3; A (dm3 mol−1 s−1) = (7.079 ± 0.035) × 1016, (1.413 ± 0.011) × 1017, and (9.772 ± 0.027) × 1020 for X = Cl, Br, and I respectively. An outer – sphere mechanism is proposed for all the reactions.  相似文献   

10.
In this research, pyrolysis and combustion behavior of three different oil shale samples from Turkey were characterized using thermal analysis techniques (TG/DTG). In pyrolysis experiments, two different mechanisms causing mass loss were observed as distillation and cracking. In combustion experiments, two distinct exothermic peaks were identified known low and high temperature oxidation. On the other hand, determination of activation energies are required for the estimation of oil extraction conditions from the oil shales. Differential methods are used to determine the activation energies of the samples where various f(α) models are applied from the literature. It was observed that the activation energies of the all oil shale samples are varied between 13.1–215.4 kJ mol−1 in pyrolysis and 13.1–408.4 kJ mol−1 in combustion experiments which are consistent with other kinetic results.  相似文献   

11.
Thermogravimetry (TG) was used in this study to evaluate thermal and catalytic pyrolysis of Atmospheric Petroleum Residue (ATR) which can be found in the state of Rio Grande do Norte/Brazil, after a process of atmospheric distillation of petroleum. The utilized sample in the process of catalytic pyrolysis was Al-MCM-41, a mesoporous material. The procedures for obtaining the thermogravimetric curves were performed in a thermobalance with heating rates of 5, 10, and 20 °C min−1. From TG, the activation energy was determined using the Flynn–Wall kinetic method, which decreased from 161 kJ mol−1, for the pure ATR, to 71 kJ mol−1, in the presence of the Al-MCM-41, showing the efficiency of the catalyst in the pyrolysis of Atmospheric Petroleum Residue.  相似文献   

12.
Acrylic acid is a key industrial compound with numerous uses. Despite its importance, its enthalpy of formation is still contentious—even ignoring “ancient” determinations, there is a 12 kJ mol−1 range of values reported for the gas phase quantity, −320 to −332 kJ mol−1. Our quantum chemical calculations using current methodology suggest the value of −321 ± 3 kJ mol−1.  相似文献   

13.
Kinetics of thermal decomposition of three structurally similar complexes Co2Cu(C2O4)3 (R-diam)2, where R is ethyl, 1,2-propyl or 1,3-propyl, was studied under non-isothermal conditions and nitrogen dynamic atmosphere at heating rates of 5, 7, 10, 12 and 15 K min−1. For data processing the Flynn-Wall-Ozawa and a modified non-parametric kinetic methods were used. By both methods the activation energy are in the range of 97–102 kJ mol−1. The formal kinetic is r=kα(1−α)2. Also a compensation effect between lnA and E was evidenced. The kinetic analysis lead to the conclusion of an identic decomposition mechanism by a single step process.  相似文献   

14.
The thermal decomposition of strontium and barium malonates has been studied isothermally and non-isothermally employing simultaneous TG-DTG-DTA, DSC, XRD and IR spectroscopic techniques. DSC of these malonates has been recorded both in oxygen and nitrogen atmospheres. The decomposition is a single step process and the end product formed is carbonate. The energy of activation and frequency factor values for the decomposition of strontium malonate are 547 kJ mol−1 and 1041 s−1 respectively. The activation energy and frequency factor values for isothermal dehydration of barium malonate sester-hydrate are 57–111 kJ mol−1 and 107–1012 s−1 respectively and the corresponding values for decomposition from DSC are 499.5 kJ mol−1 and 1044 s−1 respectively. The higher thermal stability of strontium malonate as compared to that of barium salt is ascribed to its being anhydrous so that decomposition proceeds without restructuring. Their thermal stabilities have also been compared with that of respective oxalate salts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

16.
The pyrolysis of oil shale and plastic wastes is being presently considered as an alternative means of partial substitution of fossil fuels to generate the necessary energy to supply the increasing energy demand and as well as new technology to reduce the negative environment of plastic wastes. However, Knowledge of pyrolysis kinetics is of great imponrtance for the design and simulation of the reactor and in order to establish the optimum process conditions. In this study, the thermal decomposition of polypropylene, oil shale and their mixture was studied by TG under a nitrogen atmosphere. Experiments were carried out for various heating rates (2, 10, 20, 50 K min−1) in the temperature range 300–1273 K. The values of the obtained activation energies are 207 kJ mol−1 for polyethylene, 57 kJ mol−1 for the organic matter contained in the oil shale and 174 kJ mol−1 for the mixture. The results indicate that the decomposition of these materials depends on the heating rate, and that polypropylene acts as catalyst in the degradation of the oil shale in the mixture.  相似文献   

17.
The degradation kinetics of the ABS terpolymer (acrylonitrile-butadiene-styrene) was investigated by means of thermogravimetric analysis. The samples were heated from 30 to 900°C in nitrogen atmosphere applying three different heating rates: 5, 10 and 20°C min−1. The Vyazovkin model-free kinetic method was used to calculate the activation energy (E) of the degradation process as a function of conversion and temperature. Between 20 and 80% of conversion, E was calculated and the figures were: for ABS GP, E is 204.5±11.5 kJ mol−1 (medium value); for ABS HI, E is 239.0±9.8 kJ mol−1; for ABS HH, E is 242.4±5.4 kJ mol−1.  相似文献   

18.
Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.  相似文献   

19.
The temperature dependences of the equilibrium constants of two chain reversible reactions in quinonediimine (quinonemonoimine)—2,5-dichlorohydroquinone systems in chlorobenzene were studied. The enthalpy of equilibrium of the reversible reaction of quinonediimine with 4-hydroxydiphenylamine was estimated from these data (ΔH = − 14.4±1.6 kJ mol−1) and a more accurate value of the N-H bond dissociation energy in the 4-anilinodiphenylaminyl radical was determined (D NH = 278.6±3.0 kJ mol−1). A chain mechanism was proposed for the reaction between quinonediimine and 2,5-dichlorohydroquinone, and the chain length was estimated (ν = 300 units) at room temperature. Processing of published data on the rate constant of the reaction of styrylperoxy radicals with 2,5-dichlorohydroquinone in the framework of the intersecting parabolas method gave the O-H bond dissociation energy in 2,5-dichlorohydroquinone: D OH = 362.4±0.9 kJ mol−1. Taking into account these data, the O-H bond dissociation energy in the 2,5-dichlorosemiquinone radical was found: D OH = 253.6±1.9 kJ mol−1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1661–1666, October, 2006.  相似文献   

20.
Rare-earth perchlorate complex coordinated with glycine [Nd2(Gly)6(H2O)4](ClO4)6·5H2O was synthesized and its structure was characterized by using thermogravimetric analysis (TG), differential thermal analysis (DTA), chemical analysis and elementary analysis. Its purity was 99.90%. Heat capacity measurement was carried out with a high-precision fully-automatic adiabatic calorimeter over the temperature range from 78 to 369 K. A solid-solid phase transformation peak was observed at 256.97 K, with the enthalpy and entropy of the phase transformation process are 4.438 kJ mol−1 and 17.270 J K−1 mol−1, respectively. There is a big dehydrated peak appears at 330 K, its decomposition temperature, decomposition enthalpy and entropy are 320.606 K, 41.364 kJ mol−1 and 129.018 J K−1 mol−1, respectively. The polynomial equations of heat capacity of this compound in different temperature ranges have been fitted. The standard enthalpy of formation was determined to be −8023.002 kJ mol−1 with isoperibol reaction calorimeter at 298.15 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号