首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We investigate the role of self-trapped excitons (STEs) and defects in the formation of femtosecond laser pulse induced nanogratings (NGs) in fused silica. Our experiments reveal strongly enhanced NG formation for pulse separations up to the STE lifetime. In addition, the absorption spectra show that the weaker cumulative action of laser pulses for longer temporal separations is predominantly mediated by dangling-bond-type lattice defects that emerge from decaying STEs.  相似文献   

2.
Ultrafast optical response in the films of poly(3-dodecylthiophene) (P3DT) and blue-and red-phase polydiacetylenes (PDA-4BCMU) has been investigated by femtosecond absorption and picosecond luminescence spectroscopies. Several nonlinear optical processes, i.e., hole burning, Raman gain, inverse Raman scattering, and induced-frequency shift, have been observed. The relaxation processes from photoexcited free excitons to self-trapped excitons (STEs) has been observed. The time constant is estimated as 140±40 fs in the blue-phase PDA-4BCMU and 100±50 fs in P3DT. The generated unthermalized STEs thermalize with the time constant of about 1 ps. The STEs in the blue-phase PDA-4BCMU decay exponentially with lifetime of 1.6±0.1 ps at 290 K and 2.1±0.2 ps at 10 K. The decay curves in the red-phase PDA-4BCMU and P3DT are not single exponential but can be fitted to biexponential functions with time constants of slightly shorter than 1 ps and about 5 ps. These two decay time constants correspond to relaxations to the ground state, respectively, from the free exciton and unthermalized STE and from the thermalized STE.  相似文献   

3.
The luminescence of self-trapped exciton (STE) was found and systematically studied in tetrahedron structured silica crystals (α-quartz, coesite, cristobalite) and glass. In octahedron structured stishovite only host material defect luminescence was observed. It strongly resembles luminescence of oxygen deficient silica glass and γ or neutron irradiated α-quartz. The energetic yield of STE luminescence for α-quartz and coesite is about 20% of absorbed energy and about 5(7)% for cristobalite. Two types of STE were found in α-quartz. Two overlapping bands of STEs are located at 2.5–2.7 eV. The model of STE is proposed as Si–O bond rupture, relaxation of created non-bridging oxygen (NBO) with foundation of a bond with bridging oxygen (BO) on opposite side of c or x,y channel. The strength of this bond is responsible for thermal stability of STE. Similar model of STE was ascribed for coesite and cristobalite with difference related to different structure. STE of Silica glass is strongly affected by disordered structure.  相似文献   

4.
Lattice relaxation dynamics of one-dimensional excitons coupled with an optical lattice vibration mode is studied using molecular dynamics techniques. By investigating the time-evolution of the wave-function and other physical properties, it is found that not only the wavefunction of the relaxed state, a self-trapped exciton (STE), but also the relaxation dynamics changes by varying the strength of the electron-phonon interaction. Hence we can classify STEs into “large” STEs and “small” STEs by means of the difference in physical properties. Such difference is more enhanced for excitons than for polarons, since both the translational motion and the relative motion of the electron and hole is affected in excitons. Dispersion in the phonon frequency also plays an important role in this classification. Optical properties, the Stokes shift and the peak shift of photoinduced absorption, are also calculated.  相似文献   

5.
Polarized luminescence and transient optical absorption (TOA) induced by pulsed electron irradiation in beryllium oxide crystals were studied. Exponential stages with decay times τ = 6.5 ms were observed to exist in luminescence bands at 4.0, 5.0, and 6.7 eV, which coincide in spectral composition and polarization characteristics with the luminescence of self-trapped excitons (STEs) of two types. The formation efficiency of centers with a 6.5-ms decay time is comparable to that of triplet STEs. The general characteristics of the kinetics and the decay times of the TOA of these centers do not depend on electron fluence and are governed by the monomolecular recombination process. The spectra of TOA centers with a decay time of 6.5 ms were found to be similar to those of V-type hole centers and STE hole components. The mechanism by which recombination of closely spaced, spatially correlated Frenkel pairs, Be+ and V? centers, brings about an exponential component with a 6.5-ms decay time in the luminescence of STEs of two types in BeO is discussed.  相似文献   

6.
The behavior of self-trapped defects (STDs) in ion-beam irradiated Lu2SiO5 (LSO) crystal has been investigated via temperature-dependent radioluminescence (RL) measurements. Production of oxygen vacancies is the major effect of H+ irradiation on luminescencent properties of this phosphor. Luminescence centers for self-trapped exciton (STE) and self-trapped hole emission are assigned to oxygen vacancies and oxygen ions, respectively. Ion-induced structural damage modifies the thermal stability of the STDs and creates perturbed STEs. A striking effect of ion irradiation is the approximate factor-of-two enhancement of STE RL intensity that results from implantation of only a thin (∼250 nm) surface layer of LSO. This enhancement is attributed to ion-beam modification of a surface dead layer.  相似文献   

7.
Single-shot line scan imaging using stimulated echoes   总被引:2,自引:0,他引:2  
A new high-speed MRI method is described for single-shot line scan imaging (LSI) based on stimulated echoes (STE). To allow for multislice imaging, the technique comprises a series of slice-selective preparation pulses (each corresponding to the first RF pulse of a STE sequence), a slab-selective refocusing pulse (second RF pulse), and multiple line-selective read pulses (third RF pulses). An alternative version employs packages of two slice-selective pulses followed by multiple line-selective read pulses. Experimental applications deal with human brain imaging on a clinical MRI system at 2.0 T. The technique offers user-selectable trade-offs between volume coverage (1-15 sections) and in-plane spatial resolution (1-5 mm linear pixel dimension) within total acquisition times of less than 500 ms. Although LSI yields a lower signal-to-noise ratio than Fourier imaging, single-shot LSI with STEs is free from resonance offset effects (e.g., magnetic field inhomogeneities and susceptibility differences) that are typical for echo-planar imaging. Moreover, the technique exhibits considerable robustness against motion and provides access to arbitrary fields-of-view, i.e., localized imaging of inner volumes without aliasing artifacts due to phase wrapping.  相似文献   

8.
A complex investigation of the dynamics of electronic excitations in potassium dihydrophosphate (KDP) crystals is performed by low-temperature time-resolved vacuum ultraviolet optical luminescence spectroscopy with subnanosecond time resolution and with selective photoexcitation by synchrotron radiation. For KDP crystals, data on the kinetics of the photoluminescence (PL) decay, time-resolved PL spectra (2–6.2 eV), and time-resolved excitation PL spectra (4–24 eV) at 10 K were obtained for the first time. The intrinsic character of the PL of KDP in the vicinity of 5.2 eV, which is caused by the radiative annihilation of self-trapped excitons (STEs), is ascertained; σ and π bands in the luminescence spectra of the STEs, which are due to singlet and triplet radiative transitions, are resolved; and the shift of the σ band with respect to the π band in the spectra of the STEs is explained.  相似文献   

9.
The luminescence of excitons and antisite defects (ADs) was investigated, as well as the specific features of the excitation energy transfer from excitons and ADs to the activator (Ce3+ ion) in phosphors based on Lu3Al5O12:Ce (LuAG:Ce) single crystals and single-crystalline films, which are characterized by significantly different concentrations of ADs of the Lu Al 3+ type and vacancy-type defects. The luminescence band with λmax = 249 nm in LuAG:Ce single-crystal films is due to the luminescence of self-trapped excitons (STEs) at regular sites of the garnet lattice. The excited state of STEs is characterized by the presence of two radiative levels with significantly different transition probabilities, which is responsible for the presence of two excitation bands with λmax = 160 and 167 nm and two components (fast and slow) in the decay kinetics of the STE luminescence. In LuAG:Ce single crystals, in contrast to single-crystal films, the radiative relaxation of STEs in the band with λmax = 253.5 nm occurs predominantly near Lu Al 3+ ADs. The intrinsic luminescence of LuAG:Ce single crystals at 300 K in the band with λmax = 325 nm (τ = 540 ns), which is excited in the band with λmax = 175 nm, is due to the radiative recombination of electrons with holes localized near Lu Al 3+ ADs. In LuAG:Ce single crystals, the excitation of the luminescence of Ce3+ ions occurs to a large extent with the participation of ADs. As a result, slow components are present in the luminescence decay of Ce3+ ions in LuAG:Ce single crystals due to both the reabsorption of the UV AD luminescence in the 4f-5d absorption band of Ce3+ ions with λmax = 340 nm and the intermediate localization of charge carriers at ADs and vacancy-type defects. In contrast to single crystals, in phosphors based on LuAG:Ce single-crystal films, the contribution of slow components to the luminescence of Ce3+ ions is significantly smaller due to a low concentration of these types of defects.  相似文献   

10.
Luminescence properties of CdMoO4 crystals have been investigated in a wide temperature range of T=5–300 K. The luminescence-excitation spectra are examined by using synchrotron radiation as a light source. A broad structureless emission band appears with a maximum at nearly 550 nm when excited with photons in the fundamental absorption region (<350 nm) at T=5 K. This luminescence is ascribed to a radiative transition from the triplet state of a self-trapped exciton (STE) located on a (MoO4)2? complex anion. Time-resolved luminescence spectra are also measured under the excitation with 266 nm light from a Nd:YAG laser. It is confirmed that triplet luminescence consists of three emission bands with different decay times. Such composite nature is explained in terms of a Jahn–Teller splitting of the triplet STE state. The triplet luminescence at 550 nm is found to be greatly polarized in the direction along the crystallographic c axis at low temperatures, but change the degree of polarization from positive to negative at T>180 K. This remarkable polarization is accounted for by introducing further symmetry lowering of tetrahedral (MoO4)2? ions due to a uniaxial crystal field, in addition to the Jahn–Teller distortion. Furthermore, weak luminescence from a singlet state locating above the triplet state is time-resolved just after the pulse excitation, with a polarization parallel to the c axis. The excited sublevels of STEs responsible for CdMoO4 luminescence are assigned on the basis of these experimental results and a group-theoretical consideration.  相似文献   

11.
An ultrafast optical response is studied in a quasi-one-dimensional halogen-bridged mixed-valence metal complex [Pt(en)(2)] [Pt(en)2I2] (ClO4)(4) with ultrafast time resolution. Wave packet motions both in the ground and self-trapped exciton (STE) states are observed as oscillatory modulations in the time-resolved reflectivity. The wave packet motion on the STE potential surface begins after about 50 fs with respect to the photoexcitation. This delay is attributed to the lattice relaxation from the free exciton state to the STE state.  相似文献   

12.
In this paper, I propose a new design of a defected structure (DS) for use as an electromagnetic band gap (EBG) configuration to enhance the performance of low profile microstrip antennas. The proposed defected structure embodies a honeycomb lattice of cylindrical air holes. The proposed DS is applied to three different configurations using a dielectric substrate (dielectric constant 6 and thickness 1.5 mm); namely: a dielectric substrate backed by a defected ground plane, a defected dielectric substrate backed by a normal substrate and a defected dielectric substrate backed by a defected ground plane. The simulated values of the transmission coefficient S 21 for the last one show two well-defined stop bands around 8.5 and 9.5 GHz, respectively. The first band has been used to reduce mutual coupling in a microstrip array. On the other hand, the stop band defined around 9.5 GHz has been applied to enhance the characteristics of a rectangular patch antenna and improve the operational 10-dB bandwidth.  相似文献   

13.
We discuss the generation of two two-level atoms entanglement inside a resonant microcavity under stimulated emission (STE) interaction. The amount of entanglement is studied based on different atomic initial states. For each kind of initial state, we obtain the entanglement period and the entanglement critical point, which are found to deeply depend on driving field density. If both atoms are initially in excited state, the entanglement can be induced due to STE. While when one of them initially lies in its ground state, we find there is a competition between driving field induced entanglement and STE induced entanglement. PACS number: 03.75. Gg 03.75. Lm.  相似文献   

14.
A comparative analysis of the spectral characteristics of self-trapped excitons (STE) and F 2 centers in the states with the same spin multiplicity is carried out. Based on the analysis, a criterion for the separation of the triplet-triplet (T-T) absorptive transitions in the electronic and hole components of the STE in any alkali halide crystal is proposed. It is concluded that inhomogeneities in the form of a homological cation or anion impurity in the nearest coordination shells of the spatial position of the STE, rather than hole, affect the spectral position of the T-T transitions in the electron component of the STE.  相似文献   

15.
The ultrafast dynamics of excited electronic states in a series of quasi-one-dimensional halogen-bridged platinum-complexes was investigated by using femtosecond luminescence spectroscopy. In Pt-Br system, the wave-packet oscillation of the local vibration of self-trapped excitons (STEs) was observed. The time evolutions of luminescence intensity in Pt-Br and Pt-Cl were successfully described by using a model based on a wave-packet motion on the interaction mode coordinate. In Pt-I, very fast decay was observed, suggesting the existence of efficient non-radiative decay channel directing to structural change.  相似文献   

16.
The nature of the intrinsic luminescence of the lutetium aluminum garnet Lu3Al5O12 (LuAG) has been analyzed on the basis of time-resolved spectral kinetic investigations upon excitation of two model objects, LuAG single crystals and single-crystal films, by pulsed X-ray and synchrotron radiations. Due to the differences in the mechanisms and methods of crystallization, these objects are characterized by significantly different concentrations of LuAl antisite defects. The energy structure of luminescence centers in LuAG single crystals (self-trapped excitons (STEs), excitons localized near antisite defects, and LuAl antisite defects) has been established. For single-crystal LuAG films, grown by liquid-phase epitaxy from a Pb-containing flux, the energy parameters of the following luminescence centers have been determined: STEs in regular (unperturbed by the presence of antisite defects) sites of the garnet lattice and excitons localized near Pb2+ ions. The structure of the luminescence centers, related to the background emission of impurity Pb2+ ions, has also been established in the UV and visible ranges. It is suggested that, in contrast to the two-halide hole self-trapping, a self-trapped state similar to STEs in simple oxides (Al2O3, Y2O3) is formed in LuAG; this state is formed by self-trapped holes in the form of singly charged O? ions and electrons localized at excited levels of Lu3+ cations.  相似文献   

17.
The excitation spectra are measured for the atomic and the hot molecular self-trapped exciton (STE) luminescence in solid Ne. The atomic STE component is enhanced in comparison with the molecular STE at 17 and 19 eV of excitation energies, which are located at the low energy side of the bulk exciton transitions. On the other hand, the branching ratio into the atomic and the hot molecular STE's is almost constant at the other excitation energies.  相似文献   

18.
The effects of re-scattering on the supra-thermal electron (STE) produced in moderate laser fields are analytically considered (laser intensity I is up to 5.0×1016 W•cm-2) with a simple model. The electron kinetic energy distribution given by the model is consistent to that given by the particle-in-cell simulation. Based on this fact, it is shown that the scattering of electron in intense laser by the ion in plasma plays an important role in the generation of STE in a moderate laser field.  相似文献   

19.
The graphene-based materials along with the adsorption of alkali metal ions are suitable for energy conversion and storage applications. Hence in the present work, we have investigated the structural and electronic properties of pristine and defected graphene sheet upon the adsorption of alkali metal ions (Li+, Na+, and K+) using density functional theory (DFT) calculations. The presence of vacancies or vacancy defects enhances the adsorption of alkali ions than the pristine sheet. From the obtained results, it is found that the adsorption energy of Li+ on the vacancies defected graphene sheet is higher (3.05?eV) than the pristine (2.41?eV) and Stone–Wales (2.50?eV) defected sheets. Moreover, the pore radius of the pristine and defected graphene sheets are less affected by metal ions adsorption. The increase in energy gap upon the adsorption of metal ions is found to be high in the vacancy defected graphene than that of other sheets. The metal ions adsorption in the defective vacancy sheets has high charge transfer from metal ions to the graphene sheet. The bonding characteristic between the metal ions and graphene sheet are analysed using QTAIM analysis. The influence of alkali ions on the electronic properties of the graphene sheet is examined from the Total Density of States (TDOS) and Partial Density of States (PDOS).  相似文献   

20.
Abstract

A brief survey of our studies of free and self-trapped excitons (FE and STE) in alkali halide crystals under hydrostatic pressure up to 12.5 kbar at 4.2–140 K is presented. Main attention is paid to the following effects observed: (1) the strong coupling of three energy levels of FE in CsI revealing itself as an exciton analog of pressure-scanned Fermi resonance; (2) emergence of a new emission band of STE in CsI under pressure; (3) a large pressure shift of the thermal quenching curve for STE emission in NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号