首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate, from a theoretical perspective, the coupled electronic and ionic/atomic dynamics of Na clusters embedded in Ar matrices. The system is described by time-dependent density-functional theory for cluster electrons and classical motion for Na+ ions as well as for Ar atoms. The interaction with the surrounding Ar atoms is modelled by polarization potentials plus core repulsion. We use this model to study coupled electronic and ionic/atomic motion in embedded clusters following a very short laser pulse. For excitations in the non-linear regime, we find clear signs for the coherent coupling of the Mie plasmon resonance with ionic vibrations (phonons). In addition, an incoherent line stretching is observed which can be traced back to the turning point of ionic vibrations. The coupling to the atomic motion of the surroundings leads to a slow and far reaching rearrangement of the matrix. PACS 36.40.Gk; 36.40.Vz; 31.15.EW  相似文献   

2.
We propose to enhance the generation of a phonon laser by exploiting optical superradiance. In our scheme, the optomechanical cavity contains a movable membrane, which supports a mechanical mode, and the superradiance cavity can generate the coherent collective light emissions by applying a transverse pump to an ultracold intracavity atomic gas. The superradiant emission turns out to be capable of enhancing the phonon laser performance.This indicates a new way to operate a phonon laser with the assistance of coherent atomic gases trapped in a cavity or lattice potentials.  相似文献   

3.
We consider a simple model of the lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. The internal dynamics of the atom is governed by the laser field, which is treated as classical with a large number of photons. The center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degrees of freedom. The resulting Hamilton-Schrö dinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion, and the total atomic energy and the Bloch vector length are conserved during the interaction. In our previous papers, the motion of the atom has been shown to be regular or chaotic (in the sense of exponential sensitivity to small variations of the initial conditions and/or the system’s control parameters) depending on the values of the control parameters, atom-field detuning, and recoil frequency. At the exact atom-field resonance, the exact solutions for both the external and internal atomic degrees of freedom can be derived. The center-of-mass motion does not depend in this case on the internal variables, whereas the Rabi oscillations of the atomic inversion is a frequency-modulated signal with the frequency defined by the atomic position in the optical lattice. We study analytically the correlations between the Rabi oscillations and the center-of-mass motion in two limiting cases of a regular motion out of the resonance: (1) far-detuned atoms and (2) rapidly moving atoms. This paper is concentrated on chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that an atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential, or fly ballistically with weak chaotic oscillations of its momentum, or wander in the optical lattice, changing the direction of motion in a chaotic way. In the regime of chaotic wandering, the atomic motion is shown to have fractal properties. We find a useful tool to visualize complicated atomic motion-Poincaré mapping of atomic trajectories in an effective three-dimensional phase space onto planes of atomic internal variables and momentum. The Poincaré mappings are constructed using the translational invariance of the standing laser wave. We find common features with typical nonhyperbolic Hamiltonian systems-chains of resonant islands of different sizes imbedded in a stochastic sea, stochastic layers, bifurcations, and so on. The phenomenon of the atomic trajectories sticking to boundaries of regular islands, which should have a great influence on atomic transport in optical lattices, is found and demonstrated numerically.  相似文献   

4.
We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective subwavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous medium. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.  相似文献   

5.
We demonstrate climbing of cold atoms against the gravity in a one-dimensional vertical laser standing wave. At an appropriately chosen laser–atom detuning, we show that freely falling atoms change the direction of motion and move upward. The effect is due to a tiny interplay between internal and external atomic degrees of freedom in a rigid optical lattice.  相似文献   

6.
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.  相似文献   

7.
肖佳  徐大海  伊珍  谷文举 《物理学报》2016,65(12):124202-124202
本文主要研究了利用传输矩阵理论和共振透射条件详细地推导光腔中均匀放置三个机械薄膜构成的腔光力系统中系统本征模式随机械运动的色散关系.计算结果发现系统的光学本征模式由一组四个的本征能级构成,且不同的能级随不同的机械运动模式的变化曲线各不相同,进而导致不同光学模式与不同机械运动模式之间的耦合也不相同.此外,利用微扰理论求解了当机械运动振幅远小于腔模波长、机械振子处于平衡位置附近时,各种光学模式与不同机械振动模式间相互作用耦合强度的解析表达式.研究结果能够为理论和实验上研究多模腔光力系统提供一定的参考.  相似文献   

8.
9.
We theoretically study the coupling of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with Bose-Einstein condensates. We discuss an implementation on an atom chip.  相似文献   

10.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

11.
A hybrid optomechanical system which is composed of an atomic ensemble and a standard optomechanical cavity driven by a periodically modulated external laser field is investigated. Based on the simple periodic modulation forms of the driving amplitude and effective optomechanical coupling, respectively, the atom‐mirror entanglement is discussed in detail. It is found that the maximum of the entanglement in the unresolved‐sideband regime can be further enhanced compared with the non‐modulation regime. On the other hand, we find that the introduction of the atomic ensemble permits the mechanical squeezing induced by the periodic amplitude modulation can be successfully generated even in the unresolved‐sideband regime. Due to the self‐cooling mechanism constructed by the atomic ensemble, the mechanical squeezing scheme no longer requires the extra precooling technologies.  相似文献   

12.
We propose a scheme to suppress the laser phase noise without increasing the optomechanical single-photon coupling strength.In the scheme,the parametric amplification terms,created by Kerr and Duffing nonlinearities,can restrain laser phase noise and strengthen the effective optomechanical coupling,respectively.Interestingly,decreasing laser phase noise leads to increasing thermal noise,which is inhibited by bringing in a broadband-squeezed vacuum environment.To reflect the superiority of the scheme,we simulate quantum memory and stationary optomechanical entanglement as examples,and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed.Our method can pave the way for studying other quantum phenomena.  相似文献   

13.
The equation of the photoinduced dynamics for atoms of the crystal lattice of Bi has been obtained. The time dependence of atomic shifts under the effect of an ultrashort laser pulse on the crystal has been calculated based on this equation. It has been shown that the frequency of the oscillating part of the shifts depends on the energy density of the laser pulse and time. The intensity of the Fourier spectrum of photoinduced coherent vibrations of the crystal lattice (coherent phonons) has been calculated. The obtained theoretical results have been compared with the experimental data.  相似文献   

14.
王延娜  赵迪  方爱平  蒋臣威  高韶燕  李福利 《物理学报》2015,64(22):224214-224214
研究了冷原子与法布里-珀罗腔内拉盖尔-高斯横模强耦合相互作用体系的透射光谱, 分析了透射光谱与原子在腔中运动轨迹的关系. 结果表明, 与厄米特-高斯横模相比, 拉盖尔-高斯横模的腔场与原子的最大耦合系数几乎不随阶数的增加而变化, 使得探测光谱的对比度受模式阶数的影响较小. 在拉盖尔-高斯横模场分布的圆环边缘附近, 原子运动轨迹的微小偏移会引起透射光谱的很大变化, 因此在这些位置可以实现原子运动轨迹的高精度探测.  相似文献   

15.
The dynamics of a microresonator in detuned whispering-gallery modes (WGM) cavity opto-mechanical system are investigated by the quantum Langevin equation. A WGM cavity coupling to two parallel waveguides is devised to study the transmission and reflection of this system. In single mode WGM cavity, without optomechanical coupling, both the transmission and reflection of the cavity present a Lorentzian dip and peak. When the coupling between the cavity mode and mechanical mode is considered, the transmission and reflection of the optomechanical cavity show “W” and “M” shape mode splitting. Moreover, under the action of a controlling and a probe laser, the output field at the probe frequency presents electromagnetically induced transparency (EIT)-like spectrum in the system. We give the physical origin of EIT-like and the pump-probe response for the WGM shares all the features of the Λ system in atoms. Further, due to backscattering, the two traveling waves in WGM are coupled with a rate γ. The transmission and reflection of the optomechanical cavity display three modes splitting in the spectra with optomechanical coupling between the two cavity modes and the mechanical mode.  相似文献   

16.
本文对Y模型四能级原子辅助光力学系统的稳态特性进行了研究.结果发现,构成复合光力学系统的振动腔镜和被束缚在腔内的原子系综将随着弹簧劲度系数的减小,由单稳态过渡到多稳态.在劲度系数很大时,振动腔镜对整个光力学系统几乎无作用,光力学系统和处在腔中的原子系综都将出现一个稳态解.而当劲度系数足够小时,振动腔镜的稳态位移出现了多稳现象,随之对处于光力学腔中的原子系综的稳态行为也产生了影响,不但使得原子系综的极化率呈现出多个稳态解,同时使得腔中的原子系综对探测光的吸收和色散也发生了相应的变化.同时发现,通过调节劲度系数的取值可以控制整个系统稳态解的个数.这些研究结果在精密测量或量子信息处理等方面具有潜在应用价值.  相似文献   

17.
S. V. Siparov 《Technical Physics》2002,47(11):1469-1472
An approximate kinetic equation describing a gas of two-or three-level atoms in an external laser field is found under conditions of optomechanical parametric resonance, which causes atomic oscillations along the field wave vector. The approximation is applicable to a gas of cylindrical particles whose axes retain their spatial orientation, making the gas anisotropic. The closed set of equations for macroparameters allows for a numerical solution. Expressions for direction-dependent transfer coefficients such as diffusion, viscosity, and thermal conductivity are derived phenomenologically. A two-temperature medium is shown to arise if a fluid consists of several gases with the optomechanical parametric resonance conditions satisfied for one of them.  相似文献   

18.
We report on collective nonlinear dynamics in an optical lattice formed inside a high finesse ring cavity in a so far unexplored regime, where the light shift per photon times the number of trapped atoms exceeds the cavity resonance linewidth. We observe bistability and self-induced squeezing oscillations resulting from the retroaction of the atoms upon the optical potential wells. We can well understand most of our observations within a simplified model assuming adiabaticity of the atomic motion. Nonadiabatic aspects of the atomic motion are reproduced by solving the complete system of coupled nonlinear equations of motion.  相似文献   

19.
Analytical estimates and computer simulations were undertaken to perceive the motion of negative particles through a lattice structure, the interaction being classical binary scattering. Three distinct modes of particle motion along atomic strings were found depending on the magnitude of the transverse energy and the angular momentum L of the particle with regard to the string axis. At small and large L increased scattering on the strings as compared with random penetration dominates. At medium L and negative transverse energy (bound state particles in the attractive potential) a rosette motion along the string occurs. In this case small impact parameters to the string atoms are avoided and thus an increased penetrability of the negative particles results. The influence of thermal lattice vibrations on these motions was studied.

Experimentally, the negative particle motion modes manifested themselves in the penetration profiles of 20 MeV electrons through an 8 μm MgO single crystal.  相似文献   

20.
We describe a technique that enables a strong, coherent coupling between isolated neutral atoms and mesoscopic conductors. The coupling is achieved by exciting atoms trapped above the surface of a superconducting transmission line into Rydberg states with large electric dipole moments that induce voltage fluctuations in the transmission line. Using a mechanism analogous to cavity quantum electrodynamics, an atomic state can be transferred to a long-lived mode of the fluctuating voltage, atoms separated by millimeters can be entangled, or the quantum state of a solid-state device can be mapped onto atomic or photonic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号