首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
An crosslinked polyethylene glycol (PEG) membrane was prepared for fluid catalytic cracking (FCC) gasoline desulfurization. Sulfur enrichment factor come to 4.75 and 3.51 for typical FCC gasoline feed with sulfur content of 238.28 and 1227.24 μg/g, respectively. Pervaporation performance of membranes kept stable within the long time run of 500 h, which indicated that crosslinked PEG membranes had the property of resisting pollution. Judging from chromatographic analysis, the membranes were more efficient for thiophene species. Effects of operation conditions including permeate pressure, feed temperature, feed flow rate and feed sulfur content level on the pervaporation performance were investigated. Permeation flux decreased with increasing permeate pressure while increased with the operating temperature increase. Sulfur enrichment factor increased firstly and decreased then when permeate pressure and temperature rose. The peak value occurred at 10.5 mm Hg and 358 K for model compounds feed (378 K for FCC gasoline feed). Arrhenius relationship existed between flux and operating temperature. Both sulfur enrichment factor and flux were shown to increase with increasing feed flow rate. Permeation flux increased while sulfur enrichment factor decreased as the feed sulfur content increased, but the influence of increasing sulfur content on pervaporation performance weakened when sulfur content come to 600 μg/g.  相似文献   

2.
Dairy aroma compounds recovery by pervaporation   总被引:1,自引:0,他引:1  
Original pervaporation experiments with two dairy aroma compounds diluted in model aqueous solutions through GFT silicalite-filled silicone composite membrane and GKSS PEBA homogeneous membrane (0.1 m2 effective area) were carried out on a pilot-plant. A systematic approach was done, studying the influence of various operating parameters (feed temperature and permeate pressure). The permeabilities of the membranes were calculated for each permeant, based on the estimation of the driving force as a fugacities difference. The pervaporation membranes tested showed a good selectivity for the extraction of methylthiobutanoate (hydrophobic molecule with cheese fragrance) at high dilution rate. However, these membranes proved to be less selective for the recovery of diacetyl (hydrophilic butter aroma). For this component, the coupling of pervaporation and two-stage condensation improved significantly the selectivity of the whole process. The thermodynamic properties in the liquid feed (real dairy media) as well as in the permeate (vapour-liquid equilibria at low pressure) have to be well known in order to optimize the recovery of the aroma compounds  相似文献   

3.
The search for renewable sources of energy has led to renewed interests on the biochemical route for the production of butanol. Butanol production suffers from several drawbacks, mainly caused by butanol inhibition to the butanol-producing microorganism which makes it economically uncompetitive against the chemical process. One possible solution proposed is the in situ recovery of acetone–butanol–ethanol (ABE). Among the in situ recovery options, membrane processes like pervaporation have a great potential. Thus, the effects of temperature, feed concentration, and ultrasound irradiation on permeate concentration and permeation flux for the recovery of butanol/ABE by pervaporation from aqueous solutions were investigated in this study. In the butanol–water system, permeate butanol concentration as well as flux increased with an increase in temperature and butanol feed concentration. When pervaporation studies with ABE–water mixture were carried out at 60 °C for 2, 4, 8, 16, and 24 h, pervaporation profile revealed an optimal permeate concentration as well as permeation flux. Applications of ultrasound irradiation on pervaporation improved permeate concentration by about 23 g/L for both butanol and ABE. Ultrasound irradiation also improved butanol and ABE mass permeation flux by about 13 and 11 %, respectively.  相似文献   

4.
The severe swelling behavior of most hydrophobic membranes has always been an obstinate problem when separating organic mixtures by pervaporation. In some cases, hydrophilic membranes may be an appropriate alternative. In this study, amphiphilic copolymer Pluronic F127 was employed as a surface modifier to fabricate polyethersulfone (PES) asymmetric pervaporation membranes via surface segregation. The scanning electron microscopy (SEM) photographs showed an asymmetric structure of PES/Pluronic F127 membranes. The Fourier transform-infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements confirmed the hydrophilic modification of the membrane surface. Based on the distinct difference of solubility in water between thiophene and n-octane, the prepared membranes were utilized to remove thiophene from n-octane by pervaporation. The effect of Pluronic F127 content on the pervaporation performance was evaluated experimentally. It has been found that both the permeation flux and enrichment factor exhibited a peak value of approximately 60 wt% of the Pluronic F127 content. The highest enrichment factor was around 3.50 with a permeation flux of 3.10 kg/(m2 h) for 500 mg/L sulfur in the feed at 30 °C. The influence of various operating parameters on the pervaporation performance was extensively investigated.  相似文献   

5.
Composite hydrophilic pervaporation membranes were prepared from chitosan blended with hydroxyethylcellulose using cellulose acetate as a porous support. The membranes were tested for dehydration performance of ethanol–water mixtures of ethanol concentrations 70–95 wt.% in the laminar flow region, at temperatures 50–70°C and at permeate pressures of 3–30 mmHg. The composite membrane showed an improved dehydration performance compared with dense CS/HEC membrane developed earlier. The effects of operating conditions also revealed that pervaporation of low water content feed carried out at high feed flow rate and at low temperature and permeate pressure was an advantage.  相似文献   

6.
Both the conventional method of experimentation, in which one of factors is varied maintaining the other factors fixed at constant levels and the statistically designed experimental method, in which all factors are varied simultaneously are carried out for organic removal from water by pervaporation. Binary acetonitrile–water mixtures are considered. The effects of the operating parameters on the pervaporation performance of the membrane system have been investigated. The overall mass transfer coefficients have been determined for different conditions of feed temperature and initial organic concentration. In addition, the activation energy associated to the permeation process has been determined and discussed for each feed organic mixture. Statistical experimental design and response surface methodology, RSM, have been applied to optimize the operational conditions of pervaporation process in order to maximize the output responses, which are permeate flux ratio and concentration of organic in permeate. The input variables employed for experimental design were the feed temperature, initial concentration of organic in feed and operational downstream pressure. Based on the design of experiment the quadratic response surface models have been developed to link the output responses with the input variables via mathematical relationships. The constructed response models have been tested using the analysis of variance and the canonical analysis. The obtained optimal point by means of Monte Carlo simulation method and desirability function corresponds to a feed temperature of 57.69 °C, a feed acetonitrile concentration of 6.96 wt% and a downstream pressure of 28.95 kPa. The maximal values of the permeate flux ratio and the concentration of organic in permeate obtained under optimal process conditions have been confirmed experimentally.  相似文献   

7.
Three different types of blend membranes based on chitosan and polyacrylic acid were prepared from homogeneous polymer solution and their performance on the pervaporation separation of water-ethanol mixtures was investigated. It was found that all membranes are highly water-selective. The temperature dependence of membrane permselectivity for the feed solutions of higher water content (>30 wt%) was unusual in that both permeability and separation factor increased with increase in temperature. This phenomenon might be explained from the aspect of activation energy and suggested that the sorption contribution to activation energy of permeation should not always be ignored when strong interaction occurs in the pervaporation membrane system.A comparison of pervaporation performance between composite and homogeneous membranes was also studied. Typical pervaporation results at 30°C for a 95 wt% ethanol aqueous solution were: for the homogeneous membrane, permeation flux = 33 g/m2 h, separation factor = 2216; and for the composite membrane, permeation flux = 132 g/m2 h, separation factor = 1008. A transport model consisting of dense layer and porous substrate in series was developed to describe the effect of porous substrate on pervaporation performance.  相似文献   

8.
Different fluorinated copolyimides have been synthesized using 6FDA (4,4′-(hexafluoroisopropylidene)diphthalic anhydride), DABA (3,5-diaminobenzoic acid), 4MPD (2,3,5,6-tetramethyl-1,4-phenylenediamine) and 3MPD (2,4,6-trimethyl-1,3-phenylenediamine). The copolyimides with different compositions of monomers were used as membrane materials in order to remove benzothiophene from benzothiophene/n-dodecane mixtures by pervaporation. This is especially of interest in fuel cell applications where sulphur components are poisoning the catalyst and therefore reducing the life time of the system. In order to figure out which operation parameters, e.g. temperature, pressure and membrane material are necessary for the enrichment of the sulphur-aromatic component and sufficient transmembrane fluxes, different pervaporation experiments have been performed. Feed temperatures have been varied between 353 and 413 K and permeate pressures between 19 and 45 mbar, average fluxes and enrichment factors β were determined. Activation energies for permeation were calculated for benzothiophene and n-dodecane in order to understand the temperature-dependent separation characteristics. The influence of the different diamine structures on the separation characteristics was investigated. It was found out that slight differences in structure, e.g. an additional methyl group on the polymer backbone does not have a significant effect on the pervaporation properties. Total fluxes for 6FDA–4MPD/DABA 9:1 and 6FDA–3MPD/DABA 9:1 membranes were 15.2 and 10.3 kg μm/(m2 h) at 393 K, with the corresponding enrichment factor of benzothiophene of 3.6 and 3.3, respectively. With increasing temperature, enhanced fluxes as well as enhanced enrichment factors were observed. Furthermore it was found that higher permeate pressures led to a decrease of the enrichment factor with no significant change in flux.  相似文献   

9.
制备了聚乙烯醇(PVA)/聚丙烯睛(PAN)渗透汽化复合膜,研究了交联剂用量、底膜结构、进料液组成、操作温度等因素对膜的渗透汽化性能的影响.发现PVA/PAN复合膜对水/醇混合液表现为水优先透过,进料液中乙醇浓度在60~99wt%的范围内,渗透通量Jt与温度之间符合Arrhenius关系,选择分离系数αW/E也随温度上升而增大.进料液为95wt%的乙醇/水混合液时,75℃下Jt高达300~450g/m2h,αW/E为800~1100.对异丙醇/水、异丁醇/水及甘油/水混合体系,复合膜显示出更为优秀的透过、分离性能.就膜的化学、物理结构与其渗透汽化性能间的关系进行了讨论.  相似文献   

10.
Homogeneous and composite chitosan based membranes were prepared by the solution casting technique. The membranes were investigated for the pervaporation dehydration of isopropanol-water systems. The effects of feed concentration and temperature on the separation performance of the membranes were studied. In terms of the pervaporation separation index (PSI), the composite membrane was more productive than the homogeneous membrane for pervaporation of feed with high isopropanol content. It was observed that permeation increased and the separation factor decreased with the temperature. Modification of the homogeneous chitosan membrane by chemical crosslinking with hexamethylene diisocyanate improved the permselectivity but reduced the permeation rate of the membrane.  相似文献   

11.
Transport of water–ethanol mixtures through a hydrophobic tubular ZSM-5 (Si/Al = 300) zeolite membrane during pervaporation was studied experimentally and theoretically. The zeolite membrane was deposited on a support made of pure titania coated with three intermediate ceramic titania layers. The influence of feed concentration, feed temperature and permeate pressure on permeate fluxes and permeate concentrations was investigated in a wide range. Dusty gas model parameters of the support and all ceramic intermediate layers were calculated on the basis of gas permeation data. Mass transfer resistances and pressure drops in the different membrane layers during pervaporation were calculated for several process conditions. In particular the influence of the undesired but unavoidable pressure drop in the support and the intermediate layers on the effective driving force for pervaporation was evaluated and found to be relevant for predicting the overall process performance. The membrane prepared was found to be suitable for the recovery of highly concentrated ethanol from feed mixtures of relatively low ethanol concentrations at relatively low feed temperatures.  相似文献   

12.
A poly[1-(trimethylsilyl)-1-propyne] membrane was studied in a thermopervaporation process for ethanol recovery from fermentation media. Four commercial composite membranes based on polysiloxanes (Pervap 4060, Pervatech PDMS, PolyAn, and MDK-3) were studied for comparison. The dependences of the permeate flux, permeate concentration, separation factor, and pervaporation separation index on the temperature of the feed mixture (5 wt % ethanol in water) were obtained. The maximal values of the ethanol concentration in the permeate (35 wt %) and separation factor (10.2) were obtained for the poly[1-(trimethylsilyl)-1-propyne] membrane, whereas the PolyAn membrane provided the highest permeate flux (5.4 kg m–2 h–1). The ethanol/ water separation factor for the systems studied has a maximum at 60°С; this temperature of the feed mixture is optimum for recovering ethanol from aqueous media by thermopervaporation. The existing membranes based on polysiloxanes show low ethanol–water selectivity (less than 1). Poly[1-(trimethylsilyl)-1-propyne] membranes are the most promising for recovering bioethanol from fermentation mixtures by thermopervaporation, because they showed the highest selectivity to ethanol.  相似文献   

13.
Characteristics of air separation are determined in a serial configuration of hollow fiber polysulfone membranes. One, two, and three separation cells in series are used in the measurements. All systems are operated in the counter-current flow mode and effects of the reject flow rate and feed pressure are considered in the measurements. The plug flow model is used to simulate and analyze the system. Results include variations in species permeance, stage cut, permeate enrichment, reject depletion, and recovery of oxygen and nitrogen gases. Most of the plug flow model predictions are found to closely match the measured data, with deviations less than 10%. However, deviations in N2 recoveries are found to be larger than other system parameters, with deviations close to 30%. Increase of the number of separation cells results in higher stage cuts and in turn to higher species recovery in the permeate stream. Simultaneously, the purity of the reject is increased and that of the permeate stream is decreased. At constant reject flow rate, the highest permeate enrichment is found in the permeate stream of the first cell in the two- and three-cell systems. This is caused by the increase in the feed flow rate, which results in reduction of the gas residence time and in turn the gas permeation is highly selective and is dominated by the fast permeating species O2.  相似文献   

14.
Blend membranes of chitosan and N-methylol nylon 6 were prepared by solution blending. Their pervaporation performances for the separation of ethanol–water mixtures were investigated in terms of acid (H2SO4) post-treatment, feed concentration, blend ratio and temperature. The pervaporation performance of the blend membranes was significantly improved by ionizing with H2SO4. The blend ratio of chitosan and N-methylol nylon 6 plays a different role at feed solutions of low and high water content. At a feed solution having low water content, an increase in chitosan content caused a decrease in permeability and an increase in separation factor. At a feed solution having high water content, the permeability increases with an increase in chitosan content, while the separation factor shows a maximum value around 60 wt% chitosan. It is proposed that extra permeation channels generated from the phase separation boundary between ionized chitosan and N-methylol nylon 6 account for the abnormal temperature dependence of pervaporation performance of the blend membranes.  相似文献   

15.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

16.
Abstract

A hydrophilic polymer membrane was synthesized with 2-hydroxyethyl methacrylate (HEMA) onto a Nylon 4 polymer backbone, PHEMA-g-N4. The membranes were water permselective because of the hydrophilicity, and the water permselectivity increased with increasing the degree of grafting. Permseparation of water was investigated with respect to the feed aqueous alcohol concentration, feed temperature, size of the alcohols, and degree of grafting. The separation factors of this PHEMA-g-N4 membrane were higher than those of the unmodified Nylon 4 membrane for pervaporation of aqueous ethanol solution, while the permeation rate was slightly lower. A separation factor of 98 and a 194 g/m2·h permeation rate could be obtained. Compared with an unmodified Nylon 4 membrane, the PHEMA-g-N4 membrane effectively increased the pervaporation separation index for the water-ethanol mixtures on pervaporation separation.  相似文献   

17.
PDMS-Ni2+Y zeolite hybrid membranes were fabricated and used for the pervaporation removal of thiophene from model gasoline system. The structural morphology, mechanical stability, crystallinity, and free volume characteristics of the hybrid membranes were systematically investigated. Molecular dynamics simulation was employed to calculate the diffusion coefficients of small penetrants in the polymer matrix and the zeolite. The effect of Ni2+Y zeolite content on pervaporation performance was evaluated experimentally. With the increase of Ni2+Y zeolite content, the permeation flux increased continuously, while the enrichment factor first increased and then decreased possibly due to the occurrence of defective voids within organic–inorganic interface region. The PDMS membrane containing 5.0 wt% Ni2+Y zeolite exhibited the highest enrichment factor (4.84) with a permeation flux of 3.26 kg/(m2 h) for 500 ppm sulfur in feed at 30 °C. The effects of operating conditions on the pervaporation performance were investigated in detail. It has been found that the interfacial morphology strongly influenced the separation performance of the hybrid membrane, and it was of great significance to rationally modify the interfacial region in order to improve the organic–inorganic compatibility.  相似文献   

18.
Heat transfer during pervaporation through a membrane module of silicone-rubber microtubes was studied for ammonia/water and ethanol/water feeds. The temperature drops of the feed mixture were measured as a function of flow rate, concentration and permeate side pressure. A model calculation with a vapor-phase driving force was compared with the data. The vapor permeability of the permeate components needed in the model were independently measured using an original measurement method with a differential transformer. The present simple model for heat and mass transfer during pervaporation proved to be applicable to the theoretical calculation for a membrane module of pervaporation to be used as a heat-transfer unit.  相似文献   

19.
Blend membranes of poly(vinyl alcohol) (PVA) and nylon 66 (NYL) were synthesized and crosslinked with glutaraldehyde (GA) and assessed for their suitability in dehydrating 2-butanol by pervaporation (PV). These blends were subjected to sorption studies to determine the extent of interaction and degree of swelling in pure liquids as well as binary mixtures. Wide-angle X-ray diffraction (WAXD) and thermal gravimetric analysis (TGA) were carried out to investigate changes in crystallinity and thermal stability, respectively. The effect of experimental parameters such as feed water concentration, permeate pressure and barrier thickness on membrane flux and selectivity was evaluated. The membranes were found to have good potential for breaking the azeotrope of 27.6 wt.% water with a flux of 3.07 kg/m2 h 10 μm and selectivity of 26.5. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas opposite trends were observed in case of flux. Higher permeate pressure caused a reduction in both flux and selectivity. These effects were clearly elucidated.  相似文献   

20.
The effects of water vapor on the separation of CO2 and CH4 using cellulose acetate, polyethersulfone, polysulfone and sulfolene modified poly(vinylidene fluoride) membranes were determined. Response surfaces of flux on a dry basis and separation factor clearly show the effects of feed gas water vapor content and temperature on the permeation characteristics of the film. Strong trends of a plasticizing effect due to the concentration of water in the membranes were apparent. In general, in the commercial films, the flux went through a maximum with increasing feed water content while the separation factor decreased. These variables changed little in the sulfolene modified film. At 90°C, water permeation accounted for up to 35 percent of the total permeate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号