首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macroparticle dynamics in multi-cathode-spot (MCS) vacuum arcs were studied by utilizing laser Doppler anemometry (LDA) methods for in situ measurement of the cathodic macroparticle velocities and relative emission rates. Arc current pulses having peak values of 1-2 kA at either 6 or 1 ms after arc initiation were investigated. Systematic dependence of the macroparticle dynamics (i.e., speed and direction of flight) on cathodic thermophysical properties, location of the measurement probe in the interelectrode region, instantaneous value of the arc current, arc current waveform, and macroparticle size was determined. It was found that the macroparticle velocity increased with the melting temperature of the cathode metal, distance from the cathode surface, and the instantaneous value of the arc current, and decreased with macroparticle size and the rise time of the current waveform. All the above dependencies may be understood as direct indications of the plasma-macroparticle interaction during the discharge. The measured instantaneous relative emission rates were found to peak later than the arc current but before the peak average cathode surface temperature, which was estimated using a semi-empirical model. This result may be an indication of the dependence of cathodic erosion in the form of molten metal droplets on the average cathode surface temperature.  相似文献   

2.
Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10-2 Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (VCC) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage  相似文献   

3.
The charge-state distribution of ions generated in the metal vapor vacuum arc under a wide range of experimental conditions was measured. The experiments were carried out using an ion source in which the metal vapor vacuum arc is used as the method of plasma production and by which a high-quality, high-current beam of metal ions is produced. Charge-state spectra were measured using a time-of-flight diagnostic; arc voltages were also measured. Parameters that were varied include cathode material, arc current, axial magnetic field strength, neutral gas pressure, and arc geometry  相似文献   

4.
5.
李刘合  刘红涛  罗辑  许亿 《物理学报》2016,65(6):65202-065202
采用大尺寸矩形石墨靶作为真空阴极电弧源, 研制了带状真空电弧磁过滤器. 使用法拉第杯和朗缪尔探针对90 ℃弯曲磁过滤器中的带状等离子体出口所在平面的15个区域的离子能量和密度进行了测试; 用该带状真空电弧磁过滤器制备了类金刚石膜(diamond-like carbon, DLC); 对相应位置上的类金刚石膜进行了Raman分析和膜厚测量. 结果表明: 磁过滤器出口所在平面的15个划分区域中离子能量分布接近麦克斯韦分布, 离子能量分布与类金刚石膜的结构具有明显的对应特征, 离子密度分布与DLC膜膜厚分布相互之间具有相关性.  相似文献   

6.
Vacuum arcs were established on a 90-mm-diameter Ti cathode in a deposition apparatus consisting of a spacer, 122 mm-diameter annular anode, quarter-torus magnetic macroparticle filter, and a deposition chamber. A toroidal magnetic field generally parallel to the torus walls of up to 20 mT was applied. The ion current in various cross-sections of the toroidal duct was measured using: 1) a disc probe of 130-mm diameter, oriented normal to the torus axis used to measure the transmitted ion current, and 2) a hollow cylindrical probe of 135-mm diameter and 25-mm height, whose axis coincided with the torus axis, used to measure ion current losses to the duct wall. The distribution of ion current loss was studied using an 8-segment hollow cylindrical multiprobe, where the individual probes were equally distributed on the circumference of a 130-mm-diameter circle. It was shown that: 1) the ratio of ion currents collected on the cylindrical and disc probes at first decreases with increasing the toroidal field, and then becomes approximately constant; 2) the presence of the large-diameter disc probe does not influence the value of the ion current on the cylindrical probe; and 3) the maximum ion current density near the torus walls is located in the +g direction and displaces in the -(B×g) direction with increasing the toroidal field, where g and B are the vectors of the centrifugal acceleration and the magnetic field, respectively  相似文献   

7.
8.
Macroparticle mass transport, size distribution, and spatial distribution were studied in a 6.5-MA/M2 25-ms Cu multi-cathode spot (MCS) vacuum arc. The macroparticle erosion rate was determined to be 105 ?g/C, and together with ionic emission, accounted for most of the cathodic erosion. The number of macroparticles emitted decreased exponentially with macroparticle diameter, with 20-80-?m macroparticles carrying the bulk of the mass transport. Macroparticles are emitted preferentially at an angle of 20° with respect to the cathode surface. In comparison to previous investigations, higher macroparticle erosion rates, a larger proportion of large macroparticles, and a higher emission angle are observed, and the differences are attributed to the large current density used in the present experiment.  相似文献   

9.
This paper presents experimental results of currents collected on the three-element condensation shield connected to the cathode potential in high-current vacuum arcs. The arc current had 900 Hz, 150 Hz, or 50 Hz half-cycle sinusoidal shapes and was conducted between the CuCr40 contacts with a diameter of 50 mm (cathode) and 30 mm (anode) spaced 10 mm apart. Most of the measurements were made for the current of 900 Hz with peak values up to 9 kA. Arc voltage, floating shield potential, and distribution of shield currents were measured. It was found that the current collected by the shield and also the arc voltage and floating shield potential are greater for higher frequency currents, and that they are affected by the arc mode. Considerable shield current is observed during a high-amplitude (HA) oscillation sequence of arc voltage while its mean value is increased. For 900-Hz arcs at the 9-kA peak value (Iam), the ratio of shield current (is) to an instantaneous value of arc current (ia) reaches even 40% near Iam value. In the initial half-cycle period (before the initiation of high-voltage oscillation), the ratio of is/ia increases with ia and current frequency. A close relationship was found between arc voltage and current distribution on a three-element shield  相似文献   

10.
This paper reports about experimental investigations on high-current vacuum-arc phenomena, especially anode-spot formation, arc states, and motion. The presented work was stimulated by lack of information about the transition process from the diffuse low-current mode to the high-current mode characterized by anode spot(s). Optoelectronic measurements, streak photographs, high-speed movies, and correlated arc voltage/current records yielded remarkable results on power-frequency vacuum arcs. Three different high-current vacuum arc modes can be observed beyond a certain threshold current. Which mode appears depends mainly on the momentary electrode distance. The modes are characterized by different anode-spot behavior and interelectrode phenomena. The transition between different arc modes is continuous. The arc modes observed on ring electrodes producing a magnetic blast field are the same as those appearing on butt-type electrodes. Anode-spot formation is preceded by congregations of cathode spots and may be initiated by thermal overload of the anode surface opposite to these cathode-spot clusters.  相似文献   

11.
The charging of liquid metal macroparticles in the rarified part of a vacuum arc plasma jet is studied. The sheath in the vicinity of the macroparticle is collisionless and the problem with different Debye length to macroparticle radius ratios is analyzed. Maxwellian velocity distribution functions with different temperatures for the electrons and ions in an arbitrary ratio are allowed in the model. By solving the equation for the electric field together with the equation for ion and electron flux, the charging time and the near electric field of the macroparticles were calculated. The kinetics of the macroparticle charging are controlled by the ion and electron flux to the macroparticle, which depend on the potential distribution in the sheath. The potential falls off slower than 1/r2 in the case of the large Debye length to macroparticle radius ratio, and falls off more rapidly than 1/r2 in the other case. The charge which accumulates on a macroparticle at distances of about 10 cm from a 100-Å cathode is about 10-16 C and the charging time is about 10-5 s. The influence of the plasma drift velocity on the macroparticle charging is small. The model presented here agrees well with an experimental study of macroparticle repulsion from biased substrates  相似文献   

12.
We have studied the mass and charge composition of an ion beam extracted from the plasma of a vacuum arc with a zirconium deuteride cathode for various durations of the arc current pulse (half width at half amplitude) of 2, 4, 7, and 17 μs. It has been established that the fraction of deuterium ions in the vacuum arc plasma increases with the current and the dependence achieve saturation for current of about 1 kA. For the fraction of deuterium atoms in the cathode at a level of 40%, the fraction of deuterium ions in the vacuum arc plasma can exceed 80%. The experimental results have been interpreted theoretically. It has been shown that the main sources of deuterium ions in a microsecond arc discharge are cathode spots. We have developed a model of deuterium desorption during the operation of cathode spots for quantitatively estimating the concentration of deuterium ions in the arc plasma.  相似文献   

13.
The macroparticle contamination of vacuum-arc-deposited thin films generated by a plasma source with an optional axial magnetic field is studied. Emphasis is placed on the macroparticle flux near the discharge axis. The arc current, metal species, deposition system geometry and axial magnetic field strength are varied. Distribution functions for macroparticles of Pb, Ag, Cu, Pt, W, and Ni are determined, normalized to the film thickness deposited or the charge transferred. The application of the axial magnetic field leads to a considerable reduction of the normalized macroparticle flux since the plasma is effectively focused by the field, whereas the macroparticle production is not influenced. The macroparticle content normalized to the deposited film thickness is reduced to about 20-35% of that without an additional magnetic field  相似文献   

14.
The properties of the ion flux generated in a vacuum arc are reviewed. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of the total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, although some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of the solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory and the gas dynamic theory. Experimental data indicate that these theories serve reasonably well when used to predict the mean values of the charge state, ion potential, and ion energies for the ion flux, but are quite insufficient when compared with the results for the potentials and energies of individual ions  相似文献   

15.
针对强电场中电场渗透的问题,采用特殊的法拉第筒法测量脉冲束流强度:在法拉第筒入口处用栅网屏蔽强电场,并用在收集板上加正压的方式抑制二次电子。采用解析计算和数值模拟方式对栅网的形状进行了选择,在同样的栅网丝宽和透过率的前提下,通过正六边形栅网的渗透电场最弱,因此选择正六边形栅网。将设计的法拉第筒用于一台真空弧离子源的束流强度测量,获得了该离子源的束流强度波形,其峰值流强约为550 mA;利用测量结果计算了混合离子束在Cu收集板上的二次电子发射系数,约为2.0。  相似文献   

16.
It is well known that the melting of electrodes (mainly anode melting) in vacuum arc can increase the metal vapor density around current zero and even lead to interruption failure. In order to clarify the anode activities and their influence on arc appearance and interruption capacity, series experiments of cup-shaped axial magnetic field copper electrodes were conducted. Obvious anode melting was detected; the liquid copper flowed on the contact plate of anode and formed a clockwise swirl flow. The appearance of anode melting is likely to correlate to the transition of arc mode from high-current diffuse mode to high-current diffuse column mode. The melting of anode was severer than cathode and was influenced by the distribution of cathode spots. Various kinds of copper particles at macroscopic level can be seen in arc column. Even at the interruption limit, the majority of melted copper of anode sputtered out of gap in form of liquid droplets or was pressed into the cup of anode, the copper vapor evaporated into arc column only accounted for a few portion and no obvious anode jets was found due to large plasma pressure in arc column.   相似文献   

17.
The distribution of the peak temperature and energy flux on the surface of a steel anode in a pulsed high-current vacuum arc was determined by studying the spatial location of the borderline separating the region of hardened steel, produced by the pulse of energy flux to the anode, and the region of the anode which did not undergo a phase transition. The arc was run between a 14-mm-diameter stainless steel cathode and a 25-mm 4340 steel anode, separated by a 4-mm gap, with peak currents up to 1000 A and 71 ms full-width half-amplitude (FWHA) duration. The phase transition of the steel occurs at 727°C and the above-mentioned borderline is thus the geometrical location of all points which reached a peak temperature of 727°C. The peak anode surface temperature was calculated from the borderline position by approximate solution of the three-dimensional heat conduction equation. The effect of an axial magnetic field on the anode surface temperature and energy flux distribution was also studied showing that with no magnetic field the distribution had a pronounced maximum on the axis of the arc, while with the presence of a magnetic field the distribution became annular with a maximum at about mid-radius. In comparison, the shape of the distribution of the cathode mass deposited by the arc on the anode was uniform without a magnetic field. The peak of the anode temperature and the energy flux amplitude also depended on the magnetic field, first decreasing and then increasing almost linearly with it.  相似文献   

18.
We have investigated the surface heating effects of drawn vacuum arcs for several industrial designs of axial magnetic field (AMF) contacts, using near infrared (IR) photography of the Cu-Cr arcing surfaces with an image-intensified charge-coupled device (CCD) camera and an IR pyrometer. This enables detailed contact temperature mapping immediately after a half-cycle of arc current. The very homogeneous temperature distribution observed at current zero stands in contrast to the visually nonhomogeneous high-current diffuse arc, which was studied in separately reported experiments using high-speed digital photography and arc voltage measurements. The peak temperature at current zero increased relatively linearly with the peak current IP, and reached well beyond the melting range. We combine the temperature maps with a heating model to determine the thermal sheath thickness after arcing and its dependence on IP. The results suggest that near the interruption limit of AMF contacts, the interaction of the stable high-current arc with the anode and cathode is dominated by processes induced by flowing liquid metal, which redistributes the heat input from the axially concentrated arc over most of the contact surface. Furthermore, the flow of liquid metal off the cathode and anode faces contributes to the overall contact erosion  相似文献   

19.
中性束离子源弧放电具有气体放电等离子体的非线性特性,工作时还会受到气体压强、外磁场、阴极状态等因素的影响,采用晶闸管相控调压技术的弧电源很难实现对这种大功率电弧的稳定的闭环控制。为此,提出了一种多相多重的大电流DC/DC变换器,具有响应速度快、电流上升时间短、电流纹波小等特点,大幅提高了离子源弧放电闭环控制的稳定性。设计了滤波电感能量回馈电路,弧电源可以根据中性束系统的需要使弧电流快速减小0%~100%(可调),然后根据控制信号迅速恢复正常弧电流输出,形成一个弧电流凹坑。电源还采用超级电容储能技术,使电源体积减小了2/3,电网容量小于10kV·A。离子源放电时不会受到电网波动的影响,弧放电更加稳定。实验数据显示:该电源最大输出为220kW/1500A,电流纹波在1%以内,电流上升时间约100μs,最大超调量小于3%,可以满足5 MW中性束离子源及系统的要求。  相似文献   

20.
The velocity components of individual macroparticles (molten droplets) moving through the interelectrode plasma of copper vacuum arc were measured by applying the forward-scattering laser Doppler anemometry method (LDA). The arc was sustained between two cylindrical copper electrodes, 14 mm in diameter and spaced 4 mm apart. Two current waveforms, with rise times to peak currents of 1 and 6 ms and duration of about 5 and 30 ms, respectively, were used in the experiment, while in both cases peak currents were either 1 or 2 kA. Macroparticles traversing through the ellipsoid shaped "probe-volume," which was produced by the intersection of the two He-Ne laser beams, scattered the laser light, through a monochromator, used as a 1.7-A bandpass filter, onto a photomultiplier. The Doppler-frequency component of the photomultiplier was recorded after appropriate filtering and amplification. The macroparticle velocity component obtained from the Doppler frequency was in the plane defined by the illuminating laser beams and directed perpendicularly to the optical axis. Macroparticles were detected during the whole period of the discharge, and their velocity was determined either at the instant of peak current or when the current decreased to 10 percent of its peak value, at several spatial locations inside the discharge volume. The measured macroparticle velocity components ranged from about 10-20 m/s up to about 700 m/s, showing a systematic dependence on the instantaneous value of the arc-current and on the spatial position of the "probe-volume," e. g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号