首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low solubility of sterols in aqueous media limits efficient steroid production mediated by biocatalytic microorganisms such as Mycobacterium. Sterol emulsion technologies have been developed with low success rates, largely due to the complexity of generating stable and bioavailable particles. In this study, several aqueous dispersions of sterols in-water of different particle sizes were bioconverted to 4-androstene-3,17-dione (AD) in a solvent-free environment, using a classic microorganism Mycobacterium sp. B3805 as a model system. According to our results, the high concentration (20 g/L) phytosterol dispersions with the smallest particle size tested (370 nm) achieved up to 54% (7.4 g/L) AD production yield in 11 days. Moreover, the use of 0.1 biomass/sterols ratio in a complex bioconversion media containing yeast extract, and a 1:1 glucose/microdispersion ratio in the presence of the surfactant DK-Ester P-160 (HLB16), allowed homogenization and increased microdispersion stability, thus achieving the best results using emulsion technologies to date.  相似文献   

2.
An analysis of olive, pressed sunflower, extracted sunflower, extracted soybean, deodorized sunflower, deodorized rapeseed, and deodorized corn vegetable oils has been performed on an FlavourSpec® ionmobility spectrometer. Twenty-four compounds were found in the spectra of the gas phase above samples of vegetable oils and 12 of them were identified. Ion-mobility spectrometry combined with polycapillary chromatography columns made possible distinguishing oils from different plants, as well as pressed and extracted sunflower oil by the volatile components found in the gas phase above the oil.  相似文献   

3.
Biotransformation of indole to indigo in liquid–liquid biphasic systems was performed in Escherichia coli cells expressing phenol hydroxylase. It was suggested that indole could inhibit the cell growth even at low concentration of 0.1 g/L. The critical Log P for strain PH_IND was about 5.0. Three different solvents, i.e., decane, dodecane, and dioctyl phthalate, were selected as organic phase in biphasic media. The results showed that dodecane gave the highest yield of indigo (176.4 mg/L), which was more than that of single phase (90.5 mg/L). The optimal conditions for biotransformation evaluated by response surface methodology were as follows: 540.26 mg/L of indole concentration, 42.27 % of organic phase ratio, and 200 r/min of stirrer speed; under these conditions, the maximal production of indigo was 243.51 mg/L. This study proved that the potential application of strain PH_IND in the biotransformation of indole to indigo using liquid–liquid biphasic systems.  相似文献   

4.
A simple, rapid, and accurate method based on thin-layer chromatography (TLC) combined with image-analysis software has been developed for analysis of steroid drug intermediates formed during bioconversion of soysterols. The results obtained have been compared with those from LC. The method has been used to monitor the accumulation of widely used steroid drug intermediates androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD), formed during the bioconversion of soysterols by Mycobacterium sp. NRRL B-3805 and Mycobacterium sp. NRRL B-3683. The percentage error between TLC and LC ranged between ?0.79 to +4.50 for AD and ?0.61 to +2.48 for ADD. Maximum conversion of soysterols to AD and ADD by Mycobacterium sp. NRRL B-3805 was 49.83 and 9.36 mol%, respectively, after incubation for 144 h, whereas conversion of soysterols by Mycobacterium sp. NRRL B-3683 after incubation 288 h was 41.90 mol% for AD and 37.79 mol% for ADD.  相似文献   

5.
The restriction to the use of synthetic antioxidants has fostered the research on natural antioxidants, taking into account that the prolonged usage of these substances can harm seriously the human being provoking degenerative diseases. In the present study, the antioxidant effect of the ethanolic rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of edible vegetable oils was investigated by means of the pressurized differential scanning calorimetry (PDSC) and oven test techniques. The rosemary extract, at the concentration of 2,000 mg kg?1, as well as the synthetic antioxidant tert-butylhydroquinone (TBHQ) at the concentrations of 100 and 200 mg kg?1 were added to samples of sunflower oil, corn oil, and soybean oil. The fatty acid profiles of the vegetable oils were determined by gas chromatography–mass spectrometry confirming the elevated contents of unsaturated fatty acids. The thermogravimetric analysis showed that the rosemary extract is stable at the frying temperature of the oils. The results of the oxidative stability demonstrated that the extract of Rosmarinus officinalis displayed a more effective protective action in the PDSC technique, when compared with the synthetic antioxidant TBHQ, indicating that it is a promising source of natural antioxidants for edible vegetable oils.  相似文献   

6.
Summary The analysis of sterols in vegetable oils by off-line SFC followed by capillary GC-MS is described. The fractionation of the sterols from the complex oil matrix is achieved by SFC on aminopropyl silicagel in less than 8 minutes. Injection and collection of the sterol fraction is fully automated and time controlled. The sterols are analysed without derivatisation by capillary GC-MS. Identification is performed by full scan electron ionisation and quantitation is carried out by extracted ion chromatography at m/e 107, with cholesterol as internal standard. The analyses of the sterols from the sunflower oil and two olive oils illustrate the possibilities of the method.  相似文献   

7.
In this study, a method for the efficient production of dehydroepiandrosterone (DHEA) from phytosterols in a vegetable oil/aqueous two-phase system by Mycobacterium sp. was developed. After the 3-hydroxyl group of phytosterols was protected, they could be converted into DHEA with high yield and productivity by Mycobacterium sp. NRRL B-3683. In a shake flask biotransformation, 15.05 g l?1 of DHEA and a DHEA yield of 85.39% (mol mol?1) were attained after 7 days with an initial substrate concentration of 25 g l?1. When biotransformation was carried out in a 30-l stirred bioreactor with 25 g l?1 substrate, the DHEA concentration and yield was 16.33 g l?1 and 92.65% (mol mol?1) after 7 days, respectively. The results of this study suggest that inexpensive phytosterols could be utilized for the efficient production of DHEA.  相似文献   

8.
Arachidonic acid (ARA) and eicosapentaenoic acid (EPA) were produced by Pythium irregulare fungus using soybean cotyledon fiber and soy skim, two co-products from soybean aqueous processing, as substrates in different fermentation systems. Parameters such as moisture content, substrate glucose addition, incubation time, and vegetable oil supplementation were found to be important in solid-state fermentation (SSF) of soybean fiber, which is to be used as animal feed with enriched long-chain polyunsaturated fatty acids (PUFA). Soybean fiber with 8 % (dwb) glucose supplementation for a 7-day SSF produced 1.3 mg of ARA and 1.6 mg of EPA in 1 g of dried substrate. When soy skim was used as substrate for submerged fermentation, total ARA yield of 125.7 mg/L and EPA yield of 92.4 mg/L were achieved with the supplementation of 7 % (w/v) soybean oil. This study demonstrates that the values of soybean fiber and soy skim co-products could be enhanced through the long-chain PUFA production by fermentation.  相似文献   

9.
Mg/Al layered double hydroxides (LDH) containing KI were synthesized and tested as basic heterogeneous catalysts for transesterification of sunflower oil, in order to obtain biodiesel. The process was carried out using reflux with 15:1 molar ratio of methanol to sunflower oil, and catalyst concentration of 2 mass%. The characterization of sunflower oil and biodiesel was accomplished according to ASTM and EN standard methods. The gas chromatographic and TG/DTG profiles were evaluated, and the results of yield and conversions were compared. The gas chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, specially using LDH catalysts modified with KI and molar ratio Mg/Al = 1, with conversions higher than 99 % indicating the strong influence of the chemical composition and controlled basicity, due to the presence of potassium in the structure of the catalyst.  相似文献   

10.
Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15–18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.  相似文献   

11.
A method for the determination of sterols in vegetable oils by CEC with UV–Vis detection, using methacrylate ester‐based monolithic columns, has been developed. To prepare the columns, polymerization mixtures containing monomers of different hydrophobicities were tried. The influence of composition of polymerization mixture was optimized in terms of porogenic solvent, monomers/porogens and monomer/crosslinker ratios. The composition of the mobile phase was also studied. The optimum monolith was obtained with lauryl methacrylate monomer at 60:40% (wt:wt) lauryl methacrylate/ethylene dimethacrylate ratio and 60 wt% porogens with 20 wt% of 1,4‐butanediol (12 wt% 1,4‐butanediol in the polymerization mixture). Excellent resolution between sterols was achieved in less than 7 min with an 85:10:5 v/v/v ACN–2‐propanol–water buffer containing 5 mM Tris at pH 8.0. The limits of detection were lower than 0.04 mM, and inter‐day and column‐to‐column reproducibilities at 0.75 mM were better than 6.2%. The method was applied to the determination of sterols in vegetable oils with different botanical origins and to detect olive oil adulteration with sunflower and soybean oils.  相似文献   

12.
建立了常压火焰离子化质谱(Ambient flame ionization mass spectrometry,AFI-MS)快速分析食用植物油(橄榄油、芝麻油、花生油和葵花籽油)的方法。AFI-MS检出食用植物油(橄榄油、芝麻油、花生油和葵花籽油)中的26种甘油三酯和11种甘油二脂。AFI-MS分析显示,不同的食用植物油(橄榄油、芝麻油、花生油和葵花籽油)得到的质谱图轮廓信息不同。通过对不同食用植物油的甘油三酯相对峰强度进行分析,可初步归纳出食用植物油的类型。AFI-MS分析食用植物油的操作简单,普通的打火机就可以作为离子源用于食用植物油的分析。这种便捷的离子化技术可以用于食用植物油的快速分析。  相似文献   

13.
A new method for the aromatization of ring A in androsta-1,4-diene-3,17-dione, available from sterols by means of the microbiological degradation of the side chain, was developed. The method consists of the reduction of androsta-1,4-diene-3,17-dione to the corresponding dienediol followed by double C,O-deprotonation of ring A, accompanied by expulsion of the 19-methyl group and formation of estradiol in a high yield. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 599–601, March, 1999.  相似文献   

14.
Lipase was immobilized in silk fibers through glutaraldehyde cross-linking to a maximum loading of 59 U/g silk-fiber and the immobilized lipase was utilized for the hydrolysis of sunflower oil (Helianthus annuus). The hydrolytic activity of the lipase, which was poor in biphasic oil in water system, was increased significantly when the sunflower oil was emulsified in aqueous medium. The hydrolytic activities of the immobilized lipase were 48.73 ± 1.26 U, 36.11 ± 0.96 U, and nil when the substrate sunflower oil was used as emulsion created by a rhamnolipid biosurfactant, Triton X100, and ultrasonication, respectively. Although the efficiency of the immobilized lipase was less than 12% than the corresponding free lipase, the immobilized lipase could be reused for the biosurfactant-mediated hydrolysis of sunflower oil up to third cycle of the reaction. The yield of the fatty acids in the second, third, and fourth cycles were 49.45%, 22.91%, and 5.09%, respectively, of the yield obtained in the first cycle.  相似文献   

15.
For the first time, corncob acid hydrolysate was used for microbial oil production by the oleaginous yeast Lipomyces starkeyi. After hydrolysis by dilute sulfuric acid, corncob could turn into an acid hydrolysate with a sugar concentration of about 42.3 g/L. Detoxified by overliming and absorption with activated carbon, the corncob hydrolysate could be used by L. starkeyi efficiently that a total biomass of 17.2 g/L with a lipid content of 47.0 % (corresponding to a lipid yield of 8.1 g/L) and a lipid coefficient of 20.9 could be obtained after cultivation on the corncob hydrolysate for 8 days. Therefore, L. starkeyi is a promising strain for microbial oil production from lignocellulosic biomass. Glucose and xylose were used by L. starkeyi simultaneously during lipid fermentation while arabinose could not be utilized by it. Besides, the lipid composition of L. starkeyi was similar to that of vegetable oils; thus, it is a promising feedstock for biodiesel production.  相似文献   

16.
The present study was conducted to determine and compare the oxidative stability of soybean and sunflower oils using differential scanning calorimetry (DSC). These edible oils were enriched with marjoram (Origanum majorana L.), thyme (Thymus vulgaris L.), and oregano (Origanum vulgare L.) extracts at three different concentrations and synthetic antioxidant (BHA). The fatty acid composition of studied oils was determined by gas chromatography mass spectrometry to evaluate the content of unsaturated fatty acids that are sensitive to oxidation process. Oil samples were heated in the DSC at different heating rates (4.0, 7.5, 10.0, 12.5, and 15.0 °C min?1) and oxidation kinetic parameters (activation energy, pre-exponential factor, and oxidation rate constant) were calculated. The results showed that the oxidative stability of sunflower oil samples enriched with oregano extracts and soybean oil supplemented with thyme extracts was improved compared to samples without the addition of herbal plant extracts and the synthetic antioxidant.  相似文献   

17.
《Analytical letters》2012,45(7):1190-1200
An NMR method is reported for the determination of sesamin to verify the authenticity of sesame oil. The intensity of the well-resolved H2′ sesamin signal resonating at approximately 5.95 ppm is strongly correlated with the amounts of other types of vegetable oils present in the adulterated sesame oil using the relationship, y = 4.020x + 1.516 (r 2  = 0.9967). The H2′ peak intensity of sesamin was measured for sesame oil extracted directly from the mill-sourced sesame seeds because the sesame oils purchased from local markets could be adulterated. Additionally, the oils used were obtained from the seeds native to China and the Republic of Korea, because the sesamin concentrations may vary from region to region. The proposed 1H NMR method allows for the simple identification and determination of cheaper vegetable oils used as adulterants in sesame oil. High-performance liquid chromatography was used to confirm the validity of the results obtained by NMR.  相似文献   

18.
This work presents a study of the thermal decomposition of commercial vegetable oils and of some of their thermal properties by termogravimetry (TG), derivative termogravimetry (DTG) and by differential thermal analysis (DTA). Canola, sunflower, corn, olive and soybean oils were studied. A simultaneous SDT 2960 TG/DTA from TA Instruments was used, with a heating rate of 10 K min-1 from 30 to 700°C. A flow of 100 mL min-1 of air as the purge gas was used in order to burnout the oils during analysis to estimate their heat of combustion. From the extrapolated decomposition onset temperatures obtained from TG curves, it can be seen that corn oil presents the highest thermal stability (306°C), followed by the sunflower one (304°C). Olive oil presents the lowest one (288°C). The heat of combustion of each oil was estimated from DTA curves, showing the highest value for the olive oil. Except for corn oil, which presents a significantly different thermal decomposition behavior than the other oils, a perfect linear correlation is observed, with negative slope, between the heat of combustion of an oil and its respective extrapolated onset temperature of decomposition in air. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Inductively coupled plasma–mass spectrometric determination of iron and phosphorus in three vegetable oils (soybean, coconut, and sunflower) was validated for the intermediate precision, trueness, linearity, and quantitation limit. The overall precision (n?=?5) for the analytes, which were above the method’s practical limit of quantification, were less than 2% relative standard deviation and the same as the laboratory control, NIST-SRM-1849a. Trueness was demonstrated with spike recoveries of the analytes in all vegetable oils at limit of quantification-level spiking. Although good linearity (regression coefficient greater than 0.9990) obtained, the recovery of phosphorus (156–189%) was high, possibly due to oil matrix enhancement, compared to the recovery of iron (91–106%). For soybean oil, sunflower oil, coconut oil, and medium chain triglycerides, the concentrations (mg/kg) of iron were in the range of 0.10–1.47, 0.09–1.51, 0.20–0.35, and 0.09–0.13, respectively. Similarly, phosphorus concentrations (mg/kg) were in the range of 0.77–124.56, 0.49–125.57, 0.52–9.72, and 0.85–11.90, respectively. The study achieved considerably low instrument-based practical limits of quantification for iron (0.005?mg/kg) and phosphorus (0.05?mg/kg), which are fivefold lower than the AOAC Official Method 2015.06. The high instrument sensitivity and selectivity of the method allow the determination of trace levels of iron and phosphorus in vegetable oils with good precision and trueness.  相似文献   

20.
Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g?1, respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号