首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The sound absorption of an audience on unupholstered seating as determined by acoustic scale model techniques is reported. The model auditor used was developed to simulate a seated person dressed in light to medium weight clothing. The variables examined are seating density, seating rake, perimeter per unit area of seating block, edge absorption and selective low frequency absorption. Tables are given for determining the total absorption of an audience based on the above variables.  相似文献   

2.
Measurements of steady-state sound pressure levels above the audience in large lecture halls show that the classical equation for predicting the sound pressure level is not accurate. The direct field above the seats was measured on a 1:10 scale model and was found to be dependent on the incidence angle and direction of sound propagation across the audience. The reverberant field above the seats in the model was calculated by subtracting the direct field from the measured total field and was found to be dependent on the magnitude and particularly on the placement of absorption. The decrease of sound pressure level versus distance in the total field depends on the angle (controlled by absorption placement) at which the strong reflections are incident upon the audience area. Sound pressure level decreases at a fairly constant rate with distance from the sound source in both the direct and reverberant field, and the decrease rate depends strongly on the absorption placement. The lowest rate of decay occurs when the side walls are absorptive, and both the ceiling and rear wall are reflective. These consequences are discussed with respect to prediction of speech intelligibility.  相似文献   

3.
The analysis of the sound field of a hall including the effect of audience seats has difficulties in computing time and memory. Although extensive investigations have been conducted for analyzing sound fields, there is scarcely any report dealing with the sound field including this effect. The main cause may be the complex shape and amount of materials of the audience seats. However, there is a possibility that periodical grooved structures like seat rows can be replaced by an appropriate imaginary boundary with an impedance of quasi-local reaction at the top of seats. The purpose of this research is to reduce the calculation load of acoustical analysis by treating the seat rows as an imaginary-impedance boundary which is almost equivalent to the characteristics of audience seats. The SDE filter, which can express excess attenuation caused by seat rows, is proposed and some applications to both the geometrical and wave theoretical methods are presented. To examine the validity of this method, some numerical examples calculated using an image method are discussed in comparison with the measured data. Furthermore, the numerical results of its application to the boundary element method are presented and discussed in terms of its effectiveness and validity.  相似文献   

4.
The influence of pews on the acoustical characteristics of churches may be significant because they occupy large areas in rooms lacking absorbing surfaces. However, the information about this particular category of seating is sparse and, sometimes, contradictory. Different types of pews, differing in materials and construction, were analysed in a reverberant chamber by means of Bradley’s method, measuring the absorption coefficients of blocks with different perimeter-to-area ratios. A substantial dependence on the latter parameter was found, allowing prediction of absorption coefficients as a function of actual block dimensions. The presence of upholstered kneelers showed improved absorption properties which were also replicated on other pew types by adding strips of polyester fibre. On-site measurements in three churches were used to validate the method by means of direct application of Sabine’s formula and by means of virtual acoustic modelling. The first only provided satisfactory results in rooms complying with Sabine’s assumptions, while the second also gave good results in the other church with markedly non-uniform absorption. Finally, the application to computer models of absorption coefficients measured in the chamber was discussed.  相似文献   

5.
A method is presented to determine the bulk elastic properties of isotropic elastic closed-cell foams from impedance tube sound absorption tests. For such foams, a resonant sound absorption is generally observed, where acoustic energy is transformed into mechanical vibration, which in turn is dissipated into heat due to structural damping. This article shows how the bulk Young's modulus, Poisson's ratio, and damping loss factor can be deduced from the resonant absorption. Also, an optimal damping loss factor yielding 100% of absorption at the first resonance is defined from the developed theory. The method is introduced for a sliding edge condition which is an ideal condition. Then, the method is extended to a bonded edge condition which is more easily achievable and additionally enables the identification of the Poisson's ratio. The method is experimentally tested on expanding closed-cell foams to find their elastic properties in both cases. Using the found properties, sound absorption predictions using an equivalent solid model with and without surface absorption are compared to measurements. Good correlations are obtained when considering surface absorption.  相似文献   

6.
The absorption coefficient of acoustic materials can be measured either in the frequency or the time domain. At normal incidence, a sample of the material is fitted within an impedance tube and the absorption coefficient is calculated in the frequency domain from the measurement of the transfer function between two microphones [ISO 10534-2. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer function method. ISO, Geneva, Switzerland; 1996]. When the acoustic material must be characterized at oblique incidence or in situ (noise barriers, for instance) the absorption coefficient is calculated from measurements of the loudspeaker-microphone impulse response in the time domain, both in free field and in front of the sample [CEN/TS 1793-5. Road traffic noise reduction devices - test method for determining the acoustic performance - Part 5: intrinsic characteristics - in situ values of sound reflection and airborne sound insulation. CEN, Brussels, Belgium; 2003, ISO 13472-1. Acoustic measurement of sound absorption properties of road surfaces in situ - Part I: extended surface method. ISO, Geneva, Switzerland; 2002]. Since the absorption is an intrinsic property of the acoustic material, its measurement in either domain must provide the same result. However, this has not been formally demonstrated yet. The aim of this paper is to carry out a comparison between the absorption coefficient predicted by the impedance model of a Microperforated Insertion Unit and the absorption coefficient predicted from a simulated reflection trace taken into account the finite length of the time window.  相似文献   

7.
王晶晶  李晓东 《声学学报》2016,41(5):620-627
声学周期结构兼具优化室内声场环境,节约建筑吸声材料的特性而在现代建筑中广泛使用。针对二维平面周期结构的声场优化特性,建立了一种吸声系数计算模型。首先,根据边界条件理论推导了吸声系数的线性方程组,继而通过数值分析方法进行求解,最后在驻波管和混响室中分别进行实验验证。实验结果表明,测量的吸声系数和理论计算曲线吻合良好,该模型可以准确测算二维平面周期结构的吸声系数。同时分析表明:在平面周期结构中,相同吸声材料面积情况下,吸声材料占比越大,吸声效果越好;在相同吸声材料面积和占比情况下,材料边缘长度越长,高频段吸声效果越好;随着材料边缘长度的减少,边缘效应影响减弱。   相似文献   

8.
Most of the published literatures on low-frequency underwater sound propagation are focused on the sound propagation features in the water column,while studies on sound propagation features in the sediment layer or the semi-infinite basement are rare.In this paper,based on the wave equation,a computational model for sound energy flux in the sediment layer and the basement as well as in the water column is proposed under a cylindrical coordinate system.On this basis,the effects of various sediment acoustic parameters on the sound energy distribution and the corresponding mechanisms are elaborated through numerical examples and acoustic theory.Simulation results reveal that,in a situation where sediment P-wave speed>water sound speed> sediment S-wave speed,the greater the values of density and P-wave speed in sediment,the more likely it is that the sound energy remains in the water column without leaking to the sea floor.Conversely,the influence of the variation of S-wave speed is reversed.Basement influence on the sound propagation in the fluid layer is approximately negligible if the sediment layer is sufficiently thick.  相似文献   

9.
The Grand Theater in the Sejong Performing Arts Center in Seoul, Korea is a proscenium hall with 3022 seats. Originally built in 1978, the Grand Theater was remodeled in 2004 to provide variable reverberation time (RT) using a sound system. Recently, a second remodeling was scheduled to enhance the hall’s acoustic quality, especially its RT, sound strength (G) and binaural quality index (BQI = 1-IACCE3), based on architectural acoustic analysis. In the remodeling plan, the wall covering and chair materials were changed to produce longer RT and higher G. For the remodeling design, side balconies were added to the first and third floors to provide lateral reflections to the audience area. The orchestra shell and various ceiling/wall reflectors were planned to provide more early reflections to the audience area. To verify the design, the effects of these structures on the sound pressure levels and spatial parameters of early sound in the audience area were investigated by open-type 1:10 scale model measurement. In addition, the acoustical qualities of the remodeled hall were evaluated using computer simulations and 1:50 scale model measurement. The results show that G was improved by 5 dB and BQI by 0.24, whereas the occupied RT at mid-frequencies became variable from 1.47 to 2.24 s.  相似文献   

10.
Ning Han  Xiaojun Qiu 《Applied Acoustics》2007,68(10):1297-1306
Active noise control systems have been applied to increase the insertion loss of noise barriers where the squared sound pressure or the total acoustic energy density is used as the cost function in previous works. The absolute value of the mean active sound intensity is chosen as the cost function to obtain extra sound insertion loss in the dark area of a hybrid active noise barrier system in this note. The strategy of minimizing the near-field sound intensity at discrete locations along the edge of the passive barrier is shown to be able to provide better far-field noise reduction than that of minimizing the squared sound pressure control. Both numerical simulations and off-line experiments are carried out with a three-channel demonstration system, where the locations of the secondary sources and the error sensors are optimized and comparisons are made between the extra sound pressure attenuation of the sound intensity control and that of the squared sound pressure control.  相似文献   

11.
Wood wool cement slabs, which are available in a variety of different forms, have proved to be effective for many acoustic applications. Some recent examples are described and compared with the expected behaviour based on laboratory measurements of absorption coefficients or sound reduction indices. Field results are shown for comparison where these are available.  相似文献   

12.
针对单层微穿孔板的低频吸声问题提出了微穿孔板复合板型声学超材料结构。将板型声学超材料置入微穿孔板结构的背腔内部实现结构复合。实验结果表明:在相同背腔厚度下,复合结构的吸声性能整体优于单层微穿孔板结构,其中复合结构的吸声曲线从396~892 Hz均大于0.6,在453 Hz处吸声系数达到0.972。利用有限元方法对复合结构进行了仿真,仿真计算的吸声曲线与实验吸声曲线的趋势基本相同,同时发现低频吸声主要由板型声学超材料与声波相互作用贡献。板型声学超材料的吸声峰值的对应频率处,其等效动态质量密度从正变负。在复合结构内部的微穿孔板和板型声学超材料存在相互耦合作用,使得复合结构的第一峰值发生微小偏移。增加板型声学超材料的质量块重量可以使第一吸声峰值向低频移动;保持总背腔厚度不变,增加板型声学超材料的子腔厚度,也可以使第一吸声峰向低频移动。   相似文献   

13.
基于声吸收谱峰值点的天然气燃烧特性检测理论   总被引:2,自引:0,他引:2       下载免费PDF全文
张克声  陈刘奎  欧卫华  蒋学勤  龙飞 《物理学报》2015,64(5):54302-054302
天然气的成分构成会随产地来源变化而不同, 使其具有不同的燃烧特性和经济价值.本文利用声吸收谱峰值点随气体成分变化而改变的声分子弛豫现象, 提出一种天然气燃烧特性检测理论.它基于两频点上声测量值可合成声吸收谱峰值点, 且依赖于频率的声吸收谱可由峰值点重建的物理原理; 可利用峰值点对应的特征量——弛豫频率和弛豫吸收最大值与气体成分的关系, 从两个维度同时定量检测天然气成分.该理论避免了传统上测量声吸收谱峰值点方法需要不断改变气体腔体压强的问题, 还具有无需测量气体密度的优点.  相似文献   

14.
The Hellenistic theater of Epidaurus, on the Peloponnese in Greece, attracts thousands of visitors every year who are all amazed by the fact that sound coming from the middle of the theater reaches the outer seats, apparently without too much loss of intensity. The theater, renowned for its extraordinary acoustics, is one of the best conserved of its kind in the world. It was used for musical and poetical contests and theatrical performances. The presented numerical study reveals that the seat rows of the theater, unexpectedly play an essential role in the acoustics--at least when the theater is not fully filled with spectators. The seats, which constitute a corrugated surface, serve as an acoustic filter that passes sound coming from the stage at the expense of surrounding acoustic noise. Whether a coincidence or not, the theater of Epidaurus was built with optimized shape and dimensions. Understanding and application of corrugated surfaces as filters rather than merely as diffuse scatterers of sound, may become imperative in the future design of modern theaters.  相似文献   

15.
This study investigated the absorption characteristics of materials in a multi-purpose hall using computer models, 1:10 scale model and actual hall measurements of Gimhae Arts Hall (GAH), in order to predict and evaluate the acoustical characteristics. The elements of this scale model, such as reflecting walls, seats, audience, and absorption banners, were made with materials selected according to their absorption coefficients, measured in a 1:10 scale model reverberation chamber. After the real hall was completed, in situ acoustical measurements were conducted in the GAH and compared with those of the scale model hall. Comparison of these measurements showed that the delay time of the major reflections in the scale model hall was similar to that of the real hall. However, the reverberation time especially at low frequencies showed a difference between the scale model hall and the real hall measurements. The results of computer simulations for both scale model and actual hall showed that the absorption of seats and audience, the structural detail of the reflecting walls with different thickness and air spaces, and the duct facilities in the open-type ceiling are the major differences. It was confirmed that there are more complicated absorption characteristics in the scale model design of a multi-purpose hall than a concert hall.  相似文献   

16.
Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.  相似文献   

17.
Laboratory measurements of sound absorption by audiences are known to be scarcely reliable when applied to actual rooms as a consequence of several problems, among which the different area of the “sample” and the different distribution of the reflected sound may play important roles. When dealing with worship places, characterized by a variable degree of occupation and much lower absorption due to unoccupied seats, things become more complicated as absorption seems to be proportional to the number of occupants rather than to the area they cover (as normally accepted in performing spaces). The combination of these variables has been investigated by taking advantage of laboratory measurements and analysing their application to six churches, where on site measurements of reverberation time were carried out with and without occupation. The results are discussed both in terms of simple prediction formulae (Sabine, Eyring, and Arau-Purchades) and of computer simulations, showing that laboratory measurements may be reliably used in computer simulations (at least in the frequency range from 500 Hz on). At low frequencies greater attention must be paid as the absorption coefficients need to be corrected as a function of the actual distribution of the sound field in the room.  相似文献   

18.
已有对浅海低频水声场的讨论多是关注声能量在水体中的分布特性,对水体下沉积层、基底中低频声传播的同步研究相对较少。本文基于波动方程,在柱坐标系下推导了一种浅海水体/海底统一波导下低频声能流的计算模型,在此基础上结合具体仿真算例与波动理论阐述了不同沉积层声学参数对声场能量分布的影响规律及机理。仿真结果表明,在沉积层纵波声速>水中声速>沉积层横波声速的前提下,沉积层中密度与纵波声速数值越大,声能量越趋于保留在水体中而不向海底泄漏,横波声速的影响正好相反;沉积层厚度增加到一定量后,基底对流体层中声传播的影响可近似忽略不计。   相似文献   

19.
The present series of papers summarizes the results of a three-year research project on the realistic simulation of sound fields in car passenger compartments using a combined Finite Element (FE) and Geometrical Acoustics (GA) approach. The simulations are conducted for the whole audible frequency range with the loudspeakers of the car audio system as the sound sources. The challenges faced during the project relate to fundamental questions regarding the realistic sound field simulation in small enclosures with strong modal and diffraction effects. While Part I of this series of papers focusses on the determination of the boundary and source conditions for the simulation model of the car compartment, the present paper, denoted here as Part II, presents extensive objective and subjective comparisons of the corresponding room acoustic measurement and simulation results.By applying the FE method to the low frequency part of the room transfer function (RTF) the study aims at the quantification of potential objective and subjective benefits with regard to the simulation quality in small rooms, when compared to a purely geometrical acoustics approach. The main challenges and limitations in the simulation domain are due to the very small volume, the difficult to determine source and boundary conditions and the considerable diffraction effects (especially at the seats) in the car passenger compartments. In order to keep the complexity of the FE simulations at a manageable level, all boundary conditions were described by acoustic surface impedances and no fluid-structural coupling was considered in the FE simulation model.While the results of the study reveal that an overall good agreement regarding the energy distribution in time and frequency domain is generally possible even in such complex enclosures, the results also clearly show the limitations of the impedance boundary approach in the FE domain as well as the strong sensitivity of the simulation results with regard to the uncertainty in the boundary and source conditions in both simulation domains. It can thus be concluded, that possible fields of application of the FE extension in room acoustic simulations lie in the prediction of the modally dominated low frequency part of the RTF of well defined rooms and in the prediction of sound fields that are strongly affected by near-field or diffraction effects as in the car passenger compartment. However, due to the considerable problems in the determination of realistic boundary conditions for the FE model, improved measurement techniques are urgently needed to further improve the overall simulation quality.  相似文献   

20.
Sound attenuation in forests   总被引:1,自引:0,他引:1  
Many measurements of sound attenuation rates in forests have been made but there is little in common in the measuring procedures used or the results obtained. Consequently there is a considerable divergence of opinion on the effectiveness of vegetation as a noise control measure. In this paper the factors controlling the transmission of sound through vegetation are examined and the attenuation rates achieved in pine plantations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号