首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study is made with an analysis of an incompressible viscous fluid flow past a slightly deformed porous sphere embedded in another porous medium. The Brinkman equations for the flow inside and outside the deformed porous sphere in their stream function formulations are used. Explicit expressions are investigated for both the inside and outside flow fields to the first order in small parameter characterizing the deformation. The flow through the porous oblate spheroid embedded in another porous medium is considered as the particular example of the deformed porous sphere embedded in another porous medium. The drag experienced by porous oblate spheroid in another porous medium is also evaluated. The dependence of drag coefficient and dimensionless shearing stress on the permeability parameter, viscosity ratio and deformation parameter for the porous oblate spheroid is presented graphically and discussed. Previous well-known results are then also deduced from the present analysis.  相似文献   

2.
Analytical solutions are obtained for two problems of transverse internal waves in a viscous fluid contacting with a flat layer of a fixed porous medium. In the first problem, the waves are considered which are caused by the motion of an infinite flat plate located on the fluid surface and performing harmonic oscillations in its plane. In the second problem, the waves are caused by periodic shear stresses applied to the free surface of the fluid. To describe the fluid motion in the porous medium, the unsteady Brinkman equation is used, and the motion of the fluid outside the porous medium is described by the Navier–Stokes equation. Examples of numerical calculations of the fluid velocity and filtration velocity profiles are presented. The existence of fluid layers with counter-directed velocities is revealed.  相似文献   

3.
4.
In this paper, an analytical solution for the response of a rigid sphere embedded in a full space poroelastic medium subjected to a dynamic lateral load is derived. The solution is obtained using Biots theory for acoustic waves. In this solution, the displacements of the solid skeleton and the pore pressure are expressed in terms of three scalar potentials. These potentials correspond to the wave velocities of the slow and fast compressional waves and to the shear wave. The governing equation for the dynamic motion is expressed in the frequency domain using Fourier transformation. Different boundary and load conditions were investigated. Curves showing variation in the fluid pressure and solid displacements with the loads frequency were plotted in non-dimensional forms.  相似文献   

5.
A flow past a heterogeneous porous sphere is investigated by using the perturbation theory. The flow through the sphere is divided into two zones, which are fully saturated with the viscous fluid, and the flow in these zones is governed by the Brinkman equation. The space outside the sphere, where a clear fluid flows, is also divided into two zones: the Navier–Stokes zone and the Oseen flow zone. The solutions on the interface inside the sphere are matched with the condition proposed by Merrikh and Mohammad. The stream function in the Navier–Stokes zone is matched with that on the sphere surface by the condition proposed by Ochoa-Tapia and Whitaker. It is found that the drag on the spherical shell decreases as the permeability toward the sphere boundary increases.  相似文献   

6.
The flow patterns induced by floats of different shapes (sphere, short and long cylinders) freely sinking to the neutral-buoyancy horizon in a continuously stratified fluid are investigated using optical methods. General flow elements, both large-scale (waves, vortices, hydrodynamic wake) and fine-scale (boundary layers, extended autocumulative jets), are distinguished. For large times, the float oscillation frequencies are of the order of or greater than the buoyancy frequency of the medium. This indicates the significant effect of the induced flows on the motion of the float.  相似文献   

7.
The properties of harmonic surface waves in a fluid-filled cylinder made of a compliant material are studied. The wave motions are described by a complete system of dynamic equations of elasticity and the equation of motion of a perfect compressible fluid. An asymptotic analysis of the dispersion equation for large wave numbers and a qualitative analysis of the dispersion spectrum show that there are two surface waves in this waveguide system. The first normal wave forms a Stoneley wave on the inside surface with increase in the wave number. The second normal wave forms a Rayleigh wave on the outside surface. The phase velocities of all the other waves tend to the velocity of the shear wave in the cylinder material. The dispersion, kinematic, and energy characteristics of surface waves are analyzed. It is established how the wave localization processes differ in hard and compliant materials of the cylinder __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 72–86, April 2008.  相似文献   

8.
The problem of steady rotation of a compositesphere located at the centre of a spherical container has beeninvestigated.A composite particle referred to in this paperis a spherical solid core covered with a permeable sphericalshell.The Brinkman’s model for the flow inside the composite sphere and the Stokes equation for the flow in the spherical container were used to study the motion.The torque experienced by the porous spherical particle in the presence ofcavity is obtained.The wall correction factor is calculated.In the limiting cases,the analytical solution describing thetorque for a porous sphere and for a solid sphere in an unbounded medium are obtained from the present analysis.  相似文献   

9.
Using tomographic synthetic schlieren, we are able to reconstruct the three-dimensional density field of internal waves. In this study, the waves are radiating from an oscillating sphere positioned eccentrically at the surface of a paraboloidal domain filled with a uniformly stratified fluid. We find that the prediction by ray tracing corresponds well with the observed intensities of the wave field. Remarkably, for a specific value of the forcing frequency, we observe convergence of internal wave energy to an internal wave attractor. The attractor is found to dominate fluid motion in the plane perpendicular to the plane spanned by the symmetry axis and the oscillator position.  相似文献   

10.
In relation to microrheology of blood, a theoretical approach to the motion of a red blood cell in a plane Couette flow between two parallel plates is made with emphasis on effects of wall. The red blood cell is assumed to be an elliptic cylindrical particle with a thin, inextensible membrane moving like a tank-tread along its perimeter and to contain a Newtonian fluid inside. Fluid motions are analysed numerically both inside and outside the particle on the basis of the Stokes equations, using the finite element method.A quasi-static equilibrium condition leads to the solution for the motion of the particle. It is shown that two types of motion exist (a stationary orientation motion and a flipping motion), depending on the viscosity ratio of inner to outer fluid, the axis ratio of the elliptic cylinder and the ratio of particle size to channel width. The results are applied to capillary blood flow.  相似文献   

11.
The steady motion of spheres representing particles inside tubes filled with different fluids has been investigated using both a finite-element and a finite-volume method. The rheology of the fluids has been modelled by the power-law able to describe the shear-thinning (pseudoplastic) behaviour of a series of polymer solutions. New results have been obtained for a series of tube/sphere diameter ratios in order to investigate the wall effects on the drag exerted by the fluid on the sphere. The results agree well with previous simulations for an unbounded medium (infinite diameter ratio). Experimental investigations have also been carried out and simulated, and the results compare favourably with the experiments. The present simulations revealed the convergence of the drag coefficient to a constant value independent of tube-to-sphere diameter ratio when the power-law index approaches zero.  相似文献   

12.
From the author's pseudo-canonical formulation of 3-dimensional vortex motion, the basic equations for the vorton model are derived. The division of vorton and reduction of meshes of time integration are assumed, in numerical calculations. This method is applied to numerical studies on evolutions of a connected 3-ring vortex and a vortex ring inside or outside a sphere. These seem to show cutting of the vortex filament and the following reconnection or attachment to the wall. The dissipation effect due to the approximation scheme and the singularity of vorton are discussed.  相似文献   

13.
The influence of viscoelastic ocean beds on the characteristics of surface waves passing through mangrove forests is analyzed under the assumption of linearized water wave theory in two dimensions. The trunks of the mangroves are assumed to be in the upper-layer inviscid fluid domain, whilst the roots are inside the viscoelastic bed. The associated equation of motion is obtained by coupling the Voigt’s model for flow within the viscoelastic medium with the equation of motion in the presence of mangroves. The modified dynamic conditions are coupled with the kinematic conditions to obtain the boundary condition at the free surface and the interface of the two fluids consisting of the upper layer inviscid fluid and the viscoelastic fluid bed. To understand the effects of bed viscosity as well as elasticity on energy dissipation, the complex dispersion relation associated with the plane progressive wave is derived and analyzed. Effect of physical parameters associated with mangroves and viscoelastic bed on wave motion in surface and internal modes are computed and analyzed to understand their roles in attenuating wave effects. The present model will be useful in the better understanding of wave propagation through mangroves in the coastal zone having muddy seabed.  相似文献   

14.
The translatory accelerating motion of a sphere due to an arbitrarily applied force in an unlimited Maxwell fluid is considered. The exact solutions for the velocity of the sphere for three particular types of accelerating motion are presented. The first is for a falling sphere; the second is for the decelerating motion of a sphere after the force which maintains the sphere with a constant velocity is removed; the third is for the motion of the sphere subjected to an impulsive force. The exact solutions are expressed in terms of real, regular, definite integrals which can be evaluated by numerical technique. Also presented are the asymptotic solutions for the velocity of the sphere in all three cases which are valid for small values of time.  相似文献   

15.
The scattering by a circle is considered when the outside medium is isotropic and the inside medium is anisotropic (orthotropic). The problem is a scalar one and is phrased as a scattering problem for elastic waves with polarization out of the plane of the circle (SH wave), but the solution is with minor modifications valid also for scattering of electromagnetic waves. The equation inside the circle is first transformed to polar coordinates and it then explicitly contains the azimuthal angle through trigonometric functions. Making an expansion in a trigonometric series in the azimuthal coordinate then gives a coupled system of ordinary differential equations in the radial coordinate that is solved by power series expansions. With the solution inside the circle complete the scattering problem is solved essentially as in the classical case. Some numerical examples are given showing the influence of anisotropy, and it is noted that the effects of anisotropy are generally strong except at low frequencies where the dominating scattering only depends on the mean stiffness and not on the degree of anisotropy.  相似文献   

16.
The problem of the propagation of longitudinal Biot waves in a porous medium saturated with a weakly compressible liquid (water) or a gas is considered theoretically. The frequency dependence of the phase velocities and damping coefficients is investigated numerically. It is shown that for a certain relationship between the parameters of the porous medium and the saturating fluid there is a “critical” frequency at which the properties of longitudinal waves of both kinds are identical. An analytical expression for this “critical” frequency is obtained. It is shown that for a gas-saturated porous medium, at a certain frequency, in both longitudinal waves the relative gas-matrix motion changes type. Assuming that the saturating-gas behavior corresponds to an adiabatic equation of state, an estimate is obtained for the threshold pore pressure necessary for the restructuring of the relative motion. The wave associated with matrix deformation is shown to have a high damping coefficient in a porous medium saturated with a weakly compressible liquid (water in the case considered) but to be only weakly damped in a gas-saturated porous medium.  相似文献   

17.
The problem of constructing uniform asymptotics for the far fields of internal gravity waves generated by a pulsating localized source of perturbations in finite-depth stratified medium flow is considered. The solutions obtained describe the wave perturbations both inside and outside the wave fronts and can be expressed in terms of the Airy function and its derivatives. Numerically calculated wave patterns of the excited wave fields are presented.  相似文献   

18.
The creeping motion of a porous sphere at the instant it passes the center of a spherical container has been investigated. The Brinkman's model for the flow inside the porous sphere and the Stokes equation for the flow in the spherical container were used to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous sphere and inside the spherical container) are calculated. The drag force experienced by the porous spherical particle and wall correction factor is determined. To cite this article: D. Srinivasacharya, C. R. Mecanique 333 (2005).  相似文献   

19.
This research addresses the investigation of an elastic wave field in a homogeneous and isotropic porous medium which is fully saturated by a Newtonian viscous fluid. A new methodology is developed for describing the wave field in the medium excited by multiple energy sources. To quantify the relative displacements between the fluid and solid of the medium, the governing equations of the elastic wave propagation are derived in the form of displacements specially. The velocities and attenuation of the waves are considered as functions of viscosity and frequency. Making use of the Hankel function and the moving-coordinate method, a model of the wave motion with multiple cylindrical wave sources is built. Making use of the model established in this research, the relative displacement between the fluid and the solid can be quantified, and the wave field in the porous media can then be determined with the given energy sources. Numerical simulations of cylindrical waves from multiple energy sources propagating in the porous medium saturated by viscous fluid are performed for demonstrating the practicability of the model developed.  相似文献   

20.
It has been known since the time of Biot–Gassman theory (Biot, J Acoust Soc Am 28:168–178, 1956, Gassmann, Naturf Ges Zurich 96:1–24, 1951) that additional seismic waves are predicted by a multicomponent theory. It is shown in this article that if the second or third phase is also an elastic medium then multiple p and s waves are predicted. Futhermore, since viscous dissipation no longer appears as an attenuation mechanism and the media are perfectly elastic, these waves propagate without attenuation. As well, these additional elastic waves contain information about the coupling of the elastic solids at the pore scale. Attempts to model such a medium as a single elastic solid causes this additional information to be misinterpreted. In the limit as the shear modulus of one of the solids tends to zero, it is shown that the equations of motion become identical to the equations of motion for a fluid filled porous medium when the viscosity of the fluid becomes zero. In this limit, an additional dilatational wave is predicted, which moves the fluid though the porous matrix much similar to a heart pumping blood through a body. This allows for a connection with studies which have been done on fluid-filled porous media (Spanos, 2002).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号