首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroporation is used for in vivo gene therapy, drug therapy and minimally invasive tissue ablation. Applying electrical pulses across cells can have a variety of outcomes; from no effect to reversible electroporation to irreversible electroporation. Recently, it has been proposed that measuring the passive electrical properties of electroporated tissues could provide real time feedback on the outcome of the treatment. Here we describe the results from the impedance characterization (single dispersion Cole model) for up to 30 min of the electroporation process in in vivo rat livers (n=8). The electroporation sequence consisted of 8 pulses of 100 micros with a period of 100 ms. Half of the animals were subjected to field magnitudes considered to have reversible effects (R group, E=450 V/cm) whereas for the other half irreversible field amplitudes were applied (I group, E=1500 V/cm). As expected, there was an immediate increase of conductivity (R group Deltasigma/sigma(t=0)=9+/-3%; I group Deltasigma/sigma(t=0)=43+/-1%). However, the overall long term pattern of change in conductivity after electroporation is complex and different between reversible and irreversible groups. This suggests the superposition of different phenomena which together affect the electrical properties.  相似文献   

2.
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells’ viability with and without calcium administration. For high-voltage pulses, the cell death’s mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells’ mobility.  相似文献   

3.
Irreversible electroporation (IRE) is today used as an alternative to surgery for the excision of cancer lesions. This study aimed to investigate the oxidative and cytotoxic effects the cells undergo during irreversible electroporation using IRE protocols. To do so, we used IRE-inducing pulsed electric fields (PEFs) (eight pulses of 0.1 ms duration and 2–4 kV/cm intensity) and compared their effects to those of PEFs of intensities below the electroporation threshold (eight pulses, 0.1 ms, 0.2–0.4 kV/cm) and the PEFs involving elongated pulses (eight pulses, 10 ms, 0.2–0.4 kV/cm). Next, to follow the morphology of the melanoma cell membranes after treatment with the PEFs, we analyzed the permeability and integrity of their membranes and analyzed the radical oxygen species (ROS) bursts and the membrane lipids’ oxidation. Our data showed that IRE-induced high cytotoxic effect is associated both with irreversible cell membrane disruption and ROS-associated oxidation, which is occurrent also in the low electric field range. It was shown that the viability of melanoma cells characterized by similar ROS content and lipid membrane oxidation after PEF treatment depends on the integrity of the membrane system. Namely, when the effects of the PEF on the membrane are reversible, aside from the high level of ROS and membrane oxidation, the cell does not undergo cell death.  相似文献   

4.
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.  相似文献   

5.
In past decades, researches on radiation‐induced bystander effect mainly focused on ionizing radiation such as α‐particle, β‐particle, X‐ray and γ‐ray. But few researches have been conducted on the ability of ultraviolet (UV) radiation‐induced bystander effect, and knowledge of UVC‐induced bystander effect is far limited. Here, we adopted medium transfer experiment to detect whether UVC could cause bystander effect in Chinese hamster V79 cells. We determined the cell viability, apoptosis rate, chromosome aberration and ultrastructure changes, respectively. Our results showed that: (1) the viability of UVC‐irradiated V79 cells declined significantly with the dosage of UVC; (2) similar to the irradiated cells, the main death type of bystander cells cultured in irradiation conditioned medium (ICMs) was also apoptosis; (3) soluble factors secreted by UVC‐irradiated cells could induce bystander effect in V79 cells; (4) cells treated with 4 h ICM collected from 90 mJ cm?2 UVC‐irradiated cells displayed the strongest response. Our data revealed that UVC could cause bystander effect through the medium soluble factors excreted from irradiated cells and this bystander effect was a novel quantitative and kinetic response. These findings might provide a foundation to further explore the exact soluble bystander factors and detailed mechanism underlying UVC‐induced bystander effect.  相似文献   

6.
Electroporation, cell membrane permeabilization with short electrical field pulses, is used in tissue for in vivo gene therapy, drug therapy and minimally invasive tissue ablation. For the electroporation to be successful, the electrical field that develops during the application of the pulses needs to be precisely controlled. In this study we investigate the use of electrolytic and non-electrolytic gels to generate the precise electrical fields required for controlled electroporation, in heterogeneous and irregular tissues, in vivo. Finite element computer simulations are used to illustrate various applications, such as the treatment of irregularly shaped organs and interior cavities. The feasibility of the concept is demonstrated experimentally in vivo with a rat liver subjected to irreversible electroporation.  相似文献   

7.
In vivo cell electroporation is the basis of DNA electrotransfer, an efficient method for non-viral gene therapy using naked DNA. The electric pulses have two roles, to permeabilize the target cell plasma membrane and to transport the DNA towards or across the permeabilized membrane by electrophoresis. For efficient electrotransfer, reversible undamaging target cell permeabilization is mandatory. We report the possibility to monitor in vivo cell electroporation during pulse delivery, and to adjust the electric field strength on real time, within a few microseconds after the beginning of the pulse, to ensure efficacy and safety of the procedure. A control algorithm was elaborated, implemented in a prototype device and tested in luciferase gene electrotransfer to mice muscles. Controlled pulses resulted in protection of the tissue and high levels of luciferase in gene transfer experiments where uncorrected excessive applied voltages lead to intense muscle damage and consecutive loss of luciferase gene expression.  相似文献   

8.
Ruthenium complex NAMI-A [ImH][trans-RuCl(4)(DMSO-S)Im] (Im = imidazole) is a potential chemotherapeutic drug in cancer treatment. Electroporation can be used to facilitate delivery of NAMI-A into cells. Suspension of B16F1 tumour cells from mouse melanoma in NAMI-A solution was exposed to a train of electric pulses. The effect of NAMI-A was determined by examining cell viability in clonogenic test. Our results show that electroporation increases the otherwise scarce in vitro effects of NAMI-A, i.e. reduces cell viability. At the conditions chosen for experiments 90% of cells survived in the presence of 1 microM NAMI-A, whereas in a combined treatment with 1 microM NAMI-A and electroporation only about 10% of cells survived.  相似文献   

9.
Expression of exogenous DNA in vitro is significantly affected by the particular transfection method utilized. In this study, we evaluated the efficiency of two transfection methods, chemically mediated polyethyleneimine (PEI) treatment and physically mediated electroporation, on a rat heart myoblast cell line, H9c2(2-1). After PEI transfection of pPgk-1/EGFP into H9c2(2-1) cells, EGFP expression could be easily detected by fluorospectrometer after 48 h (210 ± 12 RFU) and continued to increase after 72 h (243 ± 14 RFU). However, when H9c2(2-1) cells were transfected by electroporation (200 V, 500 μF, and one pulse), low level EGFP expression was observed after 48 h (49 ± 4 RFU) or 72 h (21 ± 14 RFU). In contrast, the easily transfectable control CHO-K1 cell line displayed a stronger EGFP expression than the H9c2(2-1) cells either by PEI or electroporation transfection. When transfection efficiencies were assayed by flow cytometry after 72 h, 13.6 ± 2.2% of PEI and 10.1 ± 1.5% of electroporation (250 V, 500 μF, and two pulses) transfected cells of H9c2(2-1) expressed EGFP, and PEI-transfected cells appeared to be less damaged (viability 93.6%) as compared to electroporation-transfected cells (39.5%). However, both PEI and electroporation (580 V, 50 Ω, and 50 μF) were effective for transfection of CHO-K1 with a higher efficiency, cell viability, and EGFP expression than H9c2(2-1). Our results indicate that the transfection efficiency of different methods varies among cell lines and that PEI is more efficient than electropolation for transfection of H9c2(2-1) whereas both PEI and electroporation are suitable for CHO-K1 transfection.  相似文献   

10.
Cell electropermeabilization (also termed cell electroporation) is nowadays a routine technique used in biochemical and pharmacological studies for the in vitro introduction of nonpermeant molecules into living cells. But electric pulses can be used as well in vivo for the delivery of drugs or DNA into cells of tissues. This review then gives an updated overview of the therapeutic perspectives of cell electropermeabilization in vivo, in particular of the antitumour electrochemotherapy (i.e., the combination of a cytotoxic nonpermeant drug with permeabilizing electric pulses delivered to the tumours) and of in vivo DNA electrotransfer for gene therapy. After a short summary of the present knowledge on cell electropermeabilization (particularly in vivo), the basis, the present achievements, and the challenges of electrochemotherapy are described and discussed, which includes an overview of still open questions and an update on recent clinical trials. DNA electrotransfer for gene therapy is an emerging field in which results are rapidly accumulating. Present knowledge on DNA electrotransfer mechanisms, as wel as the potentialities of DNA electrotransfer to become an efficient non-viral approach for gene therapy, are reviewed.  相似文献   

11.
Cell membrane permeabilization is caused by the application of high intensity electric pulses of short duration. The extent of cell membrane permeabilization depends on electric pulse parameters, characteristics of the electropermeabilization media and properties of cells exposed to electric pulses. In the present study, the temperature effect during pulse application on cell membrane fluidity and permeabilization was determined in two different cell lines: V-79 and B16F-1. While cell membrane fluidity was determined by electron paramagnetic resonance (EPR) method, the cell membrane electropermeabilization was determined by uptake of bleomycin and clonogenic assay. A train of eight rectangular pulses with the amplitude of 500 V/cm, 700 V/cm and 900 V/cm in the duration of 100 micros and with repetition frequency 1 Hz was applied. Immediately after the pulse application, 50 microl droplet of cell suspension was maintained at room temperature in order to allow cell membrane resealing. The cells were then plated for clonogenic assay. The main finding of this study is that the chilling of cell suspension from physiological temperature (of 37 degrees C) to 4 degrees C has significant effect on cell membrane electropermeabilization, leading to lower percent of cell membrane permeabilization. The differences are most pronounced when cells are exposed to electric pulse amplitude of 900 V/cm. At the same time with the decreasing of temperature, the cell membranes become less fluid, with higher order parameters in all three types of domains and higher proportion of domain with highest order parameter. Our results indicate that cell membrane fluidity and domain structure influence the electropermeabilization of cells, however it seems that some other factors may have contributing role.  相似文献   

12.
Efficient DNA electrotransfer into tumors   总被引:1,自引:0,他引:1  
DNA transfer to tumor cells of antiproliferative genes or of genes coding for immunomodulatory or antiangiogenic products is a promising approach for cancer therapy. However, intratumoral injection of plasmid DNA either naked or associated to chemical vectors results in a low level of gene expression. Recently, electrically mediated gene transfer has been described to strongly increase foreign gene expression in various tissues. We confirm and extend these observations using long duration electric pulses for several murine and human tumor models, using a reporter gene encoding for luciferase. After plasmid intratumoral injection, eight electric pulses of 20-ms duration were delivered at a frequency of 1 Hz through two flat parallel stainless steel electrodes placed at each side of the tumor. Optimal gene transfer was obtained using a voltage-to-distance ratio comprising between 400 and 600 V/cm. Two days after electrotransfer, we obtained a 10- to 1200-fold increase in gene expression over the naked DNA injection alone, leading to the expression of 0.6 to 300 ng luciferase per tumor. Moreover, histological results using beta-Gal reporter gene injected in H1299 tumor indicate that electrotransfer leads to a substantial increase in the percentage of beta-Gal positive cells. These results confirm the wide potential of electrotransfer for gene therapy in cancer.  相似文献   

13.
Under the influence of electric pulses cells undergo membrane electroporation (EP), which results in increased permeability of the membrane to exogenous compounds. EP is applied in oncology as a method to enhance delivery of anticancer drugs. For that reason it was essential to combine photodynamic tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT. Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4) at the dose of 50 microg/ml. Immediately after adding of photosensitizers the cells were electroporated with 8 electric pulses at 1200 V/cm intensity, 0.1 ms duration, 1 Hz frequency. Then, after 20 min of incubation the cells were irradiated using a light source--a visible light passing through a filter (KC 14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest that EP could enhance the effect of PDT.  相似文献   

14.
EPR oximetry of tumors in vivo in cancer therapy   总被引:6,自引:0,他引:6  
The partial oxygen pressure (pO2) in tumors is considered to be one of important factors that affect the response of tumors to different treatment. Therefore, we anticipate that the information about the variation of oxygen concentration in tumors can be used as a guide for individualizing radiotherapy, chemotherapy, and especially the combined therapies. There is thus a need to obtain quantitative data on the effects of different therapies on tumor oxygenation under in vivo conditions. One of the methods, which enable these measurements is EPR oximetry. In this work basic principles of the method will be described as well as some examples of tumor oxygenation changes after application of chemotherapeutic drugs (vinblastine, cisplatin, bleomycin) or electric pulses in combination with cisplatin or bleomycin to fibrosarcoma SA-1 tumors in mice. A paramagnetic probe, a char of Bubinga tree, was implanted into the tumor (center and periphery) and in the muscle or subcutis. EPR spectra line-width, which is proportional to oxygen concentration, was measured with time after the treatments. Tumor oxygenation was reduced for 58% of pretreatment value 1 h after intraperitoneal injection of 2.5 mg kg(-1) VLB and returned to pretreatment level within 24 h. Reduction in oxygenation of muscle and subcutis was much smaller and returned to pretreatment value faster as in tumors. With cisplatin (4 mg kg(-1)) and bleomicyn (1 mg kg(-1)) the reduction was less than 15%, but increases in combined therapy to 70%. Similar reduction was observed also with electric pulses alone (eight pulses, 1300 V cm(-1), 100 micros, 1 Hz) with fast recovery of 8h. After electrochemotherapy the recovery was slower and occurs only after 48 h. This study demonstrates that EPR oximetry is a sensitive method for monitoring changes in tissue oxygenation after different treatments, which may have implications in controlling side effects of therapy and in the planning of combined treatments.  相似文献   

15.
In this study, a new micro electroporation (EP) cell chip with three-dimensional (3D) electrodes was fabricated by means of MEMS technology, and tested on cervical cancer (HeLa) cells. Extensive statistical data of the threshold electric field and pulse duration were determined to construct an EP "phase diagram", which delineates the boundaries for 1) effective EP of five different size molecules and 2) electric cell lysis at the single-cell level. In addition, these boundary curves (i.e., electric field versus pulse duration) were fitted successfully with an exponential function with three constants. We found that, when the molecular size increases, the corresponding electroporation boundary becomes closer to the electric cell lysis boundary. Based on more than 2000 single-cell measurements on five different size molecules, the critical size of molecule was found to be approximately 40 kDa. Comparing to the traditional instrument, MEMS-based micro electroporation chip can greatly shorten the experimental time.  相似文献   

16.
构建了一种薄膜电极阵列结构的细胞电融合芯片, 通过多聚物微通道底/顶层凸齿状的微电极, 以及多聚物微通道侧壁上溅射形成的一层离散式金属薄膜电极, 共同形成离散式"三明治"微电极结构. 该微电极结构可在微通道内部形成与传统凸齿状电极相似的非均匀分布的梯度电场, 通过介电电泳效应进行细胞控制及排队. 利用多聚物在芯片上填充了传统凸齿状电极的凹陷区, 克服了细胞在凹陷区无法有效排队与融合的缺点. 在芯片上利用K562细胞开展了基于介电电泳效应的细胞排队实验及基于可逆性电穿孔效应的电融合实验, 结果表明该芯片能够较好地实现细胞排队及融合, 融合所需控制电压低至10 V左右. 细胞排队率达99%以上, 几乎无细胞在绝缘物填充区(传统凸齿电极芯片的凹陷区)滞留, 细胞两两排队高于60%, 细胞融合效率约为40%, 比传统的细胞电融合方法和凸齿电极芯片有较大提高.  相似文献   

17.
抗癌药物博莱霉素伏安行为及其反应机理研究   总被引:12,自引:1,他引:12  
博莱霉素(BLEO)A5在0.05mol/L H2SO4溶液中出现两个还原波,峰电位分别为EP1=-0.83V和EP2=-1.09V(vs.,Ag/AgCl)。用线性扫描与循环伏安法、恒电位库仑法、脉冲极谱、交流极谱等手段研究体系的伏安行为及反应机理。实验表明,P1为BLEOA5分子中嘧啶环第一步两电子还原的吸附波,P2为嘧啶环第二、三步还原和催化氢还原的具有吸附性的重叠波。  相似文献   

18.
A series of water-soluble tetrasulfonated metallophthalocyanines (MPcs) dyes have been studied to be used as a drug or photosensitizer (PS) in photodynamic therapy (PDT) for the treatment of cancers. During PDT the PS is administrated intravenously or topically to the patient before laser light at an appropriate wavelength is applied to the cancerous area to activate the PS. The activated PS will react with oxygen typically present in the cancerous tissue to generate reactive oxygen species for the destruction of the cancerous tissue. This in vitro study aimed at investigating the cytotoxic effects of different concentrations of zinc tetrasulfophthalocyanines (ZnTSPc) activated with a diode laser (λ = 672 nm) on melanoma, keratinocyte and fibroblast cells. To perform this study 3 × 10? cells/ml were seeded in 24-well plates and allowed to attach overnight, after which cells were treated with different concentrations of ZnTSPc. After 2h, cells were irradiated with a constant light dose of 4.5J/cm2. Post-irradiated cells were incubated for 24 h before cell viability was measured using the CellTiter-Blue Viability Assay. Data indicated high concentrations of ZnTSPc (60-100 μg/ml) in its inactive state are cytotoxic to the melanoma cancer cells. Also, results showed that photoactivated ZnTSPc (50 μg/ml) was able to reduce the cell viability of melanoma, fibroblast and keratinocyte cells to 61%, 81% and 83% respectively. At this photosensitizing concentration the efficacy the treatment light dose of 4.5J/cm2 against other light doses of 2.5J/cm2, 7.5J/cm2 and 10J/cm2 on the different cell lines were analyzed. ZnTSPc at a concentration of 50 μg/ml activated with a light dose of 4.5J/cm2 was the most efficient for the killing of melanoma cancer cells with reduced killing effects on healthy normal skin cells in comparison to the other treatment light doses. Melanoma cancer cells after PDT with a photosensitizing concentration of 50μg/ml and a treatment light dose of 4.5J/cm2 showed certain apoptosis characteristics such as chromatin condensation and fragmentation of the nucleus. This concludes that low concentrations of ZnTSPc activated with the appropriate light dose can be used to induce cell death in melanoma cells with the occurrence of minimal damage to surrounding healthy tissue.  相似文献   

19.
Huang H  Wei Z  Huang Y  Zhao D  Zheng L  Cai T  Wu M  Wang W  Ding X  Zhou Z  Du Q  Li Z  Liang Z 《Lab on a chip》2011,11(1):163-172
Here we report a novel electroporation microchip with great performance and compatibility with the standard multi-well plate used in biological research. The novel annular interdigitated electrode design makes it possible to achieve efficient cell transfection as high as 90% under low-strength electrical pulses, thereby circumventing the many adverse effects of conventional cuvette-type and previously reported microchip-based electroporation devices. Using this system, we demonstrated substantially improved cell transfection efficacy and viability in cultured and primary cells, for both plasmid and synthetic siRNA. Improvements of this system open new opportunities for high-throughput applications of siRNA technology in basic and biomedical research.  相似文献   

20.
We successfully identified the bystander effect in B16 murine melanoma cells exposed to UVA irradiation. The effect was identified based on melanogenesis following the medium transfer of the B16 cells, which had been cultured for 24 h after being exposed to UVA irradiation, to nonirradiated cells (bystander cells). Our confirmation study of the functional mechanism of bystander cells confirmed the reduced levels of mitochondrial membrane potential 1-4 h after the medium transfer. In addition, we observed increased levels of intracellular oxidation after 9-12 h, and the generation of melanin radicals, including long-lived radicals, 24 h after medium transfer. Further analysis of bystander factors revealed that the administration of EGTA treatment at the time of medium transfer led to an inhibition of melanogenesis and to neutralization of the mitochondrial membrane potential level, as well as to the restoration of intracellular oxidation levels to those of controls. The results demonstrated that the UVA irradiation bystander effect in B16 cells, as indicated by melanogenesis, was induced by the increase in intracellular oxidation due to the mitochondrial activity of calcium ions, which were among the bystander factors involved in the increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号