首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell electropermeabilization (also termed cell electroporation) is nowadays a routine technique used in biochemical and pharmacological studies for the in vitro introduction of nonpermeant molecules into living cells. But electric pulses can be used as well in vivo for the delivery of drugs or DNA into cells of tissues. This review then gives an updated overview of the therapeutic perspectives of cell electropermeabilization in vivo, in particular of the antitumour electrochemotherapy (i.e., the combination of a cytotoxic nonpermeant drug with permeabilizing electric pulses delivered to the tumours) and of in vivo DNA electrotransfer for gene therapy. After a short summary of the present knowledge on cell electropermeabilization (particularly in vivo), the basis, the present achievements, and the challenges of electrochemotherapy are described and discussed, which includes an overview of still open questions and an update on recent clinical trials. DNA electrotransfer for gene therapy is an emerging field in which results are rapidly accumulating. Present knowledge on DNA electrotransfer mechanisms, as wel as the potentialities of DNA electrotransfer to become an efficient non-viral approach for gene therapy, are reviewed.  相似文献   

2.
Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase permeability of cell membrane and thus enables transfer of genes. Currently, majority of research is focused on improving in vivo transfection efficiency, while mechanisms involved in gene electrotransfer are not completely understood. In this paper we analyze the mechanisms of gene electrotransfer by using combinations of high-voltage (HV) and low-voltage pulses (LV) in vitro. We applied different combinations of HV and LV pulses to CHO cells and determined the transfection efficiency. We obtained that short HV pulses alone were sufficient to deliver DNA into cells for optimal plasmid concentrations and that LV pulse did not increase transfection efficiency, in contrast to reported studies in vivo. However, for sub-optimal plasmid concentrations combining HV and LV pulses increased transfection rate. Our results suggest that low-voltage pulses increase transfection in conditions where plasmid concentration is low, typically in vivo where mobility of DNA is limited by the extracellular matrix. LV pulses provide additional electrophoretic force which drags DNA toward the cell membrane and consequently increase transfection efficiency, while for sufficiently high concentrations of the plasmid (usually used in vitro) electrophoretic LV pulses do not have an important role.  相似文献   

3.
Gene electrotransfer is a non-viral technique using electroporation for gene transfection. The method is widely used in the preclinical setting and results from the first clinical study in tumours have been published. However, the preclinical studies, which form the basis for the clinical trials, have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited.We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed.Interestingly, we found needle electrodes to be more efficient than plate electrodes (p < 0.001) and electric field calculations showed that penetration of the stratum corneum led to much more homogenous field distribution at the DNA injection site. Furthermore, we have optimised the electric pulse regimens for both plate and needle electrodes using a range of high voltage and low voltage pulse combinations.In conclusion, our data support that needle electrodes should be used in human clinical studies of gene electrotransfer to skin for improved expression.  相似文献   

4.
The artificial electrotransfer of bioactive agents such as drugs, peptides or therapeutical nucleic acids and oligonucleotides by membrane electroporation (MEP) into single cells and tissue cells requires knowledge of the optimum ranges of the voltage, pulse duration and frequency of the applied pulses. For clinical use, the classical electroporators appear to necessitate some tissue specific presetting of the pulse parameters at the high voltage generator, before the actual therapeutic pulsing is applied. The optimum pulse parameters may be derived from the kinetic normal mode analysis of the current relaxations due to a voltage step (rectangular pulse). Here, the novel method of trapezium test pulses is proposed to rapidly assess the current (I)/voltage (U) characteristics (IUC). The analysis yields practical values for the voltage U(app) between a given electrode distance and pulse duration t(E) of rectangular high voltage (HV) pulses, to be preset for an effective in vivo electroporation of mouse subcutaneous tumors, clamped between two planar plate electrodes of stainless steel. The IUC of the trapezium pulse compares well with the IUC of rectangular pulses of increasing amplitudes. The trapezium pulse phase (s) of constant voltage and 3 ms duration, following the rising ramp phase (r), yields a current relaxation which is similar to the current relaxation during a rectangular pulse of similar duration. The fit of the current relaxation of the trapezium phase (s) to an exponential function and the IUC can be used to estimate the maximum current at a given voltage. The IUC of the falling edge (phase f) of the trapezium pulse serves to estimate the minimum voltage for the exploration of the long-lived electroporation membrane states with consecutive low-voltage (LV) pulses of longer duration, to eventually enhance electrophoretic uptake of ionic substances, initiated by the preceding HV pulses.  相似文献   

5.
Efficient DNA electrotransfer into tumors   总被引:1,自引:0,他引:1  
DNA transfer to tumor cells of antiproliferative genes or of genes coding for immunomodulatory or antiangiogenic products is a promising approach for cancer therapy. However, intratumoral injection of plasmid DNA either naked or associated to chemical vectors results in a low level of gene expression. Recently, electrically mediated gene transfer has been described to strongly increase foreign gene expression in various tissues. We confirm and extend these observations using long duration electric pulses for several murine and human tumor models, using a reporter gene encoding for luciferase. After plasmid intratumoral injection, eight electric pulses of 20-ms duration were delivered at a frequency of 1 Hz through two flat parallel stainless steel electrodes placed at each side of the tumor. Optimal gene transfer was obtained using a voltage-to-distance ratio comprising between 400 and 600 V/cm. Two days after electrotransfer, we obtained a 10- to 1200-fold increase in gene expression over the naked DNA injection alone, leading to the expression of 0.6 to 300 ng luciferase per tumor. Moreover, histological results using beta-Gal reporter gene injected in H1299 tumor indicate that electrotransfer leads to a substantial increase in the percentage of beta-Gal positive cells. These results confirm the wide potential of electrotransfer for gene therapy in cancer.  相似文献   

6.
In vivo electroporation has emerged as a leading technology for developing nonviral gene therapies, and the various technical parameters governing electroporation efficiency have been optimized by both theoretical and experimental analysis. However, most electroporation parameters focused on the electric conditions and the preferred vehicle for plasmid DNA injections has been normal saline. We hypothesized that salts in vehicle for plasmid DNA must affect the efficiency of DNA transfer because cations would alter ionic atmosphere, ionic strength, and conductivity of their medium. Here, we show that half saline (71 mM) is an optimal vehicle for in vivo electroporation of naked DNA in skeletal muscle. With various salt concentrations, two reporter genes, luciferase and beta-galactosidase were injected intramuscularly under our optimal electric condition (125 V/cm, 4 pulses x 2 times, 50 ms, 1 Hz). Exact salt concentrations of DNA vehicle were measured by the inductively coupled plasma-atomic emission spectrometer (ICP-AES) and the conductivity change in the tissue induced by the salt in the medium was measured by Low-Frequency (LF) Impedance Analyzer. Luciferase expression increased as cation concentration of vehicle decreased and this result can be visualized by X-Gal staining. However, at lower salt concentration, transfection efficiency was diminished because the hypoosmotic stress and electrical injury by low conductivity induced myofiber damage. At optimal salt concentration (71 mM), we observed a 3-fold average increase in luciferase expression in comparison with the normal saline condition (p < 0.01). These results provide a valuable experimental parameter for in vivo gene therapy mediated by electroporation.  相似文献   

7.
Electroporation, cell membrane permeabilization with short electrical field pulses, is used in tissue for in vivo gene therapy, drug therapy and minimally invasive tissue ablation. For the electroporation to be successful, the electrical field that develops during the application of the pulses needs to be precisely controlled. In this study we investigate the use of electrolytic and non-electrolytic gels to generate the precise electrical fields required for controlled electroporation, in heterogeneous and irregular tissues, in vivo. Finite element computer simulations are used to illustrate various applications, such as the treatment of irregularly shaped organs and interior cavities. The feasibility of the concept is demonstrated experimentally in vivo with a rat liver subjected to irreversible electroporation.  相似文献   

8.
9.
Lin YC  Li M  Wu CC 《Lab on a chip》2004,4(2):104-108
Simulation and experimental demonstration of the in vitro gene delivery enhancement using electrostatic forces and electroporation (EP) microchips were conducted. Electroporation is a technique with which DNA molecules can be delivered into cells using electric field pulses. This study demonstrates that plasmid DNA can be attracted to the cell surfaces at the specific regions using an electrostatic force. Therefore, the DNA concentration on the cell surface is dramatically increased, which highly enhances the gene transfection efficiency compared to that without an attracting-electric field. The electrostatic force can be designed into specific regions, where the DNA plasmids are attracted to, to provide the region-targeting function. In this micro-device, the top electrode and the interdigitated electrodes provided the DNA attracting-electric field, and the interdigitated electrodes provided adequate electric fields for the electroporation process on the chip surface. Using the EP microchip, cells could be manipulated in situ without detachment if adherent cells were used for electroporation. Five different cells of two different types, primary cell and cell line, were successfully transfected under multi-pulse or single pulse electric field stimulation without applying an attracting-electric field. This study simulated and analyzed the electric field distributions at the DNA attracting and electroporation processes, and successfully demonstrated that the electrostatic force attracted DNA plasmids to specific regions and highly enhanced the gene delivery. In summary, this EP microchip should provide many potential applications for gene therapy.  相似文献   

10.
The electroporative transfer of gene DNA and other bioactive substances into tissue cells by electric pulses gains increasing importance in the new disciplines of electrochemotherapy and electrogenetherapy. The efficiency of the electrotransfer depends crucially on the adsorption of the gene DNA and oligonucleotides to the plasma cell membranes. Here it is shown that the adsorption of larger oligonucleotides such as fragments (ca. 300 bp) of sonicated calf-thymus DNA, to anionic lipids of unilamellar vesicles (diameter Phi=300+/-90 nm) is greatly enhanced by divalent cations such as Ca(2+)-ions. Applying centrifugation, bound and free DNA are monitored optically at the wavelength lambda=260 nm. Using arsenazo III as a Ca(2+)-indicator and atomic absorption spectroscopy (AAS), Ca(2+)-titrations of DNA and vesicles yield the individual equilibrium constants of Ca(2+)- and DNA-binding not only for the binary complexes: Ca/lipids, Ca/DNA and DNA/lipids, respectively, but also for the various processes to form the ternary complex DNA/Ca/lipids. The data provide the basis for goal-directed optimization protocols for the adsorption and thus efficient electrotransfer of oligonucleotides and polynucleotides into cells.  相似文献   

11.
Tissue electroporation is a technique that facilitates the introduction of molecules into cells by applying a series of short electric pulses to specific areas of the body. These pulses temporarily increase the permeability of the cell membrane to small drugs and macromolecules. The goal of this paper is to provide information on the thermal effects of these electric pulses for consideration when designing electroporation protocols. The parameters investigated include electrode geometry, blood flow, metabolic heat generation, pulse frequency, and heat dissipation through the electrodes. Basic finite-element models were created in order to gain insight and weigh the importance of each parameter. The results suggest that for plate electrodes, the energy from the pulse may be used to adequately estimate the heating in the tissue. However, for needle electrodes, the geometry, i.e. spacing and diameter, and pulse frequency are critical when determining the thermal distribution in the tissue.  相似文献   

12.
Interstitial transport of DNA is a rate-limiting step in electric field-mediated gene delivery in vivo. Interstitial transport of macromolecules, such as plasmid DNA, over a distance of several cell layers, is inefficient due to small diffusion coefficient and inadequate convection. Therefore, we explored electric field as a novel driving force for interstitial transport of plasmid DNA. In this study, agarose gels were used to mimic the interstitium in tissues as they had been well characterized and could be prepared reproducibly. We measured the electrophoretic movements of fluorescently labeled plasmid DNA in agarose gels with three different concentrations (1.0%, 2.0% and 3.0%) subjected to electric pulses at three different field strengths (100, 200 and 400 V/cm) and four different pulse durations (10, 50, 75, 99 ms). We observed that: (1) shorter pulses (10 ms) were not as efficient as longer pulses in facilitating plasmid transport through agarose gels; (2) plasmid electromobility reached a plateau at longer pulse durations; and (3) plasmid electromobility increased with applied electric energy, up to a threshold, in all three gels. These data suggested that both pulse strength and duration needed to be adequately high for efficient plasmid transport through extracellular matrix. We also found that electric field was better than concentration gradient of DNA as a driving force for interstitial transport of plasmid DNA.  相似文献   

13.
One of current applications of electroporation is electrochemotherapy and electroablation for local cancer treatment. Both of these electroporation modalities share some similarities with radiation therapy, one of which could be the bystander effect. In this study, we aimed to investigate the role of the bystander effect following these electroporation-based treatments. During direct CHO-K1 cell treatment, cells were electroporated using one 100 µs duration square wave electric pulse at 1400 V/cm (for bleomycin electrotransfer) or 2800 V/cm (for irreversible electroporation). To evaluate the bystander effect, the medium was taken from directly treated cells after 24 h incubation and applied on unaffected cells. Six days after the treatment, cell viability and colony sizes were evaluated using the cell colony formation assay. The results showed that the bystander effect after bleomycin electrotransfer had a strong negative impact on cell viability and cell colony size, which decreased to 2.8% and 23.1%, respectively. On the contrary, irreversible electroporation induced a strong positive bystander effect on cell viability, which increased to 149.3%. In conclusion, the results presented may serve as a platform for further analysis of the bystander effect after electroporation-based therapies and may ultimately lead to refined application of these therapies in clinics.  相似文献   

14.
Local pulsed electric field application is a method for improving non-viral gene delivery. Mechanisms of the improvement include electroporation and electrophoresis. To understand how electrophoresis affects pDNA delivery in vivo, we quantified the magnitude of electric field-induced interstitial transport of pDNA in 4T1 and B16.F10 tumors implanted in mouse dorsal skin-fold chambers. Four different electric pulse sequences were used in this study, each consisted of 10 identical pulses that were 100 or 400 V/cm in strength and 20 or 50 ms in duration. The interval between consecutive pulses was 1 s. The largest distance of transport was obtained with the 400 V/cm and 50 ms pulse, and was 0.23 and 0.22 microm/pulse in 4T1 and B16.F10 tumors, respectively. There were no significant differences in transport distances between 4T1 and B16.F10 tumors. Results from in vivo mapping and numerical simulations revealed an approximately uniform intratumoral electric field that was predominantly in the direction of the applied field. The data in the study suggested that interstitial transport of pDNA induced by a sequence of ten electric pulses was ineffective for macroscopic delivery of genes in tumors. However, the induced transport was more efficient than passive diffusion.  相似文献   

15.
Electroporation is becoming an increasingly important tool for introducing biologically active compounds into living cells, yet the effectiveness of this technique can be low, particularly in vivo. One way to improve the success rate is to optimize the shock protocols, but experimental studies are costly, time consuming, and yield only an indirect measurement of pore creation. Alternatively, this study models electroporation in two geometries, a space-clamped membrane and a single cell, and investigates the effects of pulse duration, frequency, shape, and strength. The creation of pores is described by a first order differential equation derived from the Smoluchowski equation. Both the membrane and the cell are exposed to monophasic and biphasic shocks of varying duration (membrane, 10 micros-100 s; cell, 0.1 micros-200 ms) and to trains of monophasic and biphasic pulses of varying frequency (membrane, 50 Hz-4 kHz; cell, 200 kHz-6 MHz). The effectiveness of each shock is measured by the fractional pore area (FPA). The results indicate that FPA is sensitive to shock duration only in a very narrow range (membrane, approximately 1 ms; cell, approximately 0.25 micros). In contrast, FPA is sensitive to shock strength and frequency of the pulse train, increasing linearly with shock strength and decreasing slowly with frequency. In all cases, monophasic shocks were at least as effective as biphasic shocks, implying that varying the strength and frequency of a monophasic pulse train is the most effective way to control the creation of pores.  相似文献   

16.
We report the use of dielectrophoresis (DEP) to position U-937 monocytes within a non-uniform electric field, prior to electroporation (EP) for gene delivery. DEP positioning and EP pulsing were both accomplished using a common set of inert planar electrodes, micro-fabricated on a glass substrate. A single-shell model of the cell's dielectric properties and finite-element modeling of the electric field distribution permitted us to predict the major features of cell positioning. The extent to which electric pulses increased the permeability of the cell membranes to fluorescent molecules and to pEGFPLuc DNA plasmids were found to depend on prior positioning. For a given set of pulse parameters, EP was either irreversible (resulting in cytolysis), reversible (leading to gene delivery), or not detectable, depending on where cells were positioned. Our results clearly demonstrate that position-dependent EP of cells in a non-uniform electric field can be controlled by DEP.  相似文献   

17.
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.  相似文献   

18.
Irreversible electroporation (IRE) is today used as an alternative to surgery for the excision of cancer lesions. This study aimed to investigate the oxidative and cytotoxic effects the cells undergo during irreversible electroporation using IRE protocols. To do so, we used IRE-inducing pulsed electric fields (PEFs) (eight pulses of 0.1 ms duration and 2–4 kV/cm intensity) and compared their effects to those of PEFs of intensities below the electroporation threshold (eight pulses, 0.1 ms, 0.2–0.4 kV/cm) and the PEFs involving elongated pulses (eight pulses, 10 ms, 0.2–0.4 kV/cm). Next, to follow the morphology of the melanoma cell membranes after treatment with the PEFs, we analyzed the permeability and integrity of their membranes and analyzed the radical oxygen species (ROS) bursts and the membrane lipids’ oxidation. Our data showed that IRE-induced high cytotoxic effect is associated both with irreversible cell membrane disruption and ROS-associated oxidation, which is occurrent also in the low electric field range. It was shown that the viability of melanoma cells characterized by similar ROS content and lipid membrane oxidation after PEF treatment depends on the integrity of the membrane system. Namely, when the effects of the PEF on the membrane are reversible, aside from the high level of ROS and membrane oxidation, the cell does not undergo cell death.  相似文献   

19.
Electroporation is used for in vivo gene therapy, drug therapy and minimally invasive tissue ablation. Applying electrical pulses across cells can have a variety of outcomes; from no effect to reversible electroporation to irreversible electroporation. Recently, it has been proposed that measuring the passive electrical properties of electroporated tissues could provide real time feedback on the outcome of the treatment. Here we describe the results from the impedance characterization (single dispersion Cole model) for up to 30 min of the electroporation process in in vivo rat livers (n=8). The electroporation sequence consisted of 8 pulses of 100 micros with a period of 100 ms. Half of the animals were subjected to field magnitudes considered to have reversible effects (R group, E=450 V/cm) whereas for the other half irreversible field amplitudes were applied (I group, E=1500 V/cm). As expected, there was an immediate increase of conductivity (R group Deltasigma/sigma(t=0)=9+/-3%; I group Deltasigma/sigma(t=0)=43+/-1%). However, the overall long term pattern of change in conductivity after electroporation is complex and different between reversible and irreversible groups. This suggests the superposition of different phenomena which together affect the electrical properties.  相似文献   

20.
Electroporation, the increase in the permeability of bilayer lipid membranes by the application of high voltage pulses, has the potential to serve as a mechanism for transdermal drug delivery. However, the associated current flow through the skin will increase the skin temperature and might affect nearby epidermal cells, lipid structure or even transported therapeutic molecules. Here, thermal conduction and thermal convection models are used to provide upper and lower bounds on the local temperature rise, as well as the thermal damage, during electroporation from exponential voltage pulses (70 V maximum) with a 1 ms and a 10 ms pulse time constant. The peak temperature rise predicted by the conduction model ranges from 19 degrees C for a 1 ms time constant pulse to 70 degrees C for the 10 ms time constant pulse. The convection (mass transport) model predicts a 18 degrees C peak rise for 1 ms time constant pulses and a 51 degrees C peak rise for a 10 ms time constant pulse. The convection model compares more favorably with previous experimental studies and companion observations of the local temperature rise during electroporation. Therefore, it is expected that skin electroporation can be employed at a level which is able to transport molecules transdermally without causing significant thermal damage to the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号