首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A disialylated tetrasaccharide, Neu5Ac(α2,3)Gal(β1,3)[Neu5Ac(α2,6)]GlcNAc ( 1 ), which is found at the termini of some N‐glycans, has been synthesized. Compound 1 was obtained through an α‐sialylation reaction between a sialic acid donor and a trisaccharide that was synthesized from the glycosylation of a sialylated disaccharide with a glucosaminyl donor. This synthetic route enabled the synthesis of the as‐described disialylated structure. A more‐convergent route based on the glycosylation of two sialylated disaccharides was also established to scale up the synthesis. Protection of the amide groups in the sialic acid residues significantly increased the yield of the glycosylation reaction between the two sialylated disaccharides, thus suggesting that the presence of hydrogen bonds on the sialic acid residues diminished their reactivity.  相似文献   

2.
The combination of ion mobility with matrix-assisted laser desorption/ionization allows for the rapid separation and analysis of biomolecules in complex mixtures (such as tissue sections and cellular extracts), as isobaric lipid, peptide, and oligonucleotide molecular ions are pre-separated in the mobility cell before mass analysis. In this study, MALDI-IM MS is used to analyze gangliosides, a class of complex glycosphingolipids that has different degrees of sialylation. Both GD1a and GD1b, structural isomers, were studied to see the effects on gas-phase structure depending upon the localization of the sialic acids. A total ganglioside extract from mouse brain was also analyzed to measure the effectiveness of ion mobility to separate out the different ganglioside species in a complex mixture.  相似文献   

3.
Controlling cellular responses on biomaterial surfaces is crucial in biomedical applications such as tissue engineering and implantable prosthetics. Since cells encounter various nanoscale topographic features in their natural environment, it has been postulated that surface nanotopography may be an alternative route to fabricate biomaterials with a desirable cellular response. In this framework, we investigated the responses of primary human fibroblasts to platinum substrates with different levels of surface roughness at the nanoscale. The nanorough surfaces were fabricated by using the glancing angle deposition technique (GLAD). We found that levels of cellular responses depended on the surface roughness and the size of the nanoscale features. We showed that in response to nanotopography cells spread less and have an elongated morphology, displaying signs of actin cytoskeleton impairment and reduced formation of focal adhesion complexes. Although cell growth and adhesion were impaired on the nanorough substrates, cell viability was not affected by topography. To a minor extent our results also indicate that cell migration might be reduced on the nanorough surfaces, since a significantly lower gene expression of migration related genes were found on the roughest surfaces as compared to the flat reference. The results presented here demonstrate that surface nanotopography influences fibroblasts responses on platinum, which may be used to reduce cellular adhesion on platinum implant surfaces such as implantable neural electrodes.  相似文献   

4.
唾液酸是一类酸性九碳糖,通过α-糖苷键的方式广泛分布于生物体系内糖缀合物和多聚唾液酸中而发挥着重要的生物学功能。如何有效地构建唾液酸α-糖苷键,合成天然的含有唾液酸的糖缀合物、多聚唾液酸及其衍生物,是糖化学研究的热点和难点。近年来,人们基于唾液酸的结构特点,一方面通过在C2位引入易离去的基因,发展了直接成苷的方法,显著提高成苷的产率;另一方面,通过对C1和C3位引入辅助基因,发展了间接成苷的方法,提高了成苷的α-选择性。本文主要从直接成苷和间接成苷两个方面对目前研究的唾液酸糖苷化的化学方法学进行综述。  相似文献   

5.
Oligosaccharides of the glycolipids and glycoproteins at the outer membranes of human cells carry terminal neuraminic acids, which are responsible for recognition events and adhesion of cells, bacteria, and virus particles. The synthesis of neuraminic acid containing glycosides is accomplished by intracellular sialyl transferases. Therefore, the chemical manipulation of cellular sialylation could be very important to interfere with cancer development, inflammations, and infections. The development and applications of the first nanomolar fluorescent inhibitors of sialyl transferases are described herein. The obtained carbohydrate‐nucleotide mimetics were found to bind all four commercially available and tested eukaryotic and bacterial sialyl transferases in a fluorescence polarization assay. Moreover, it was observed that the anionic mimetics intruded rapidly and efficiently into cells in vesicles and translocated to cellular organelles surrounding the nucleus of CHO cells. The new compounds inhibit cellular sialylation in two cell lines and open new perspectives for investigations of cellular sialylation.  相似文献   

6.
Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.  相似文献   

7.
Sialic acid linkages on N-glycans were distinguished by MALDI-TOF MS after two steps derivatization by dimethylamine and ammonium hydroxide. By using this method, more than 20 kinds of sialic acid with detailed linkage information were detected on A549 cells.  相似文献   

8.
Nonulosonic acids, commonly referred to as sialic acids, are a highly important group of nine-carbon sugars common to all domains of life. They all share biosynthetic and structural features, but otherwise display a remarkable chemical diversity. In humans, sialic acids cover all cells which makes them important for processes such as cellular protection, immunity and brain development. On the other hand, sialic acids and other nonulosonic acids have been associated with pathological processes including cancer and viral infections. In prokaryotes, nonulosonic acids are commonly associated with pathogens, which developed through molecular mimicry a strategy to circumvent the host''s immune response. However, the remarkably large chemical diversity of prokaryotic nonulosonic acids challenges their discovery, and research on molecular characteristics essential for medical applications are often not feasible. Here, we demonstrate a novel, universal large-scale discovery approach that tackles the unmapped diversity of prokaryotic nonulosonic acids. Thereby, we utilize selective chemical labelling combined with a newly established mass spectrometric all-ion-reaction scanning approach to identify nonulosonic acids and other ulosonic acid-like sugars. In doing so, we provide a first molecular-level comparative study on the frequency and diversity across different phyla. We not only illustrate their surprisingly wide-spread occurrence in non-pathogenic species, but also provide evidence of potential higher carbon variants. Many biomedical studies rely on synthetic routes for sialic acids, which are highly demanding and often of low product yields. Our approach enables large-scale exploration for alternative sources of these highly important compounds.

A novel large-scale survey approach for microbial nonulosonic acids (sialic acids) including a first molecular level comparative study is presented.  相似文献   

9.
Previously, we have characterized the HIV-I(SF2) gp120 glycopeptides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) and nanospray electrospray ionization (ESI). Although we characterized 25 of 26 consensus glycosylation sites, we could not obtain any information about the extent of sialylation of the complex glycans. Sialylation is known to alter the biological activity of some glycoproteins, e.g., infectivity of some human and nonhuman primate lentiviruses is reduced when the envelope glycoproteins are extensively sialylated, and thus, characterization of the extent of sialylation of complex glycoproteins is of biological interest. Since neither MALDI/MS nor nanospray ESI provided much information about sialylation, probably because of suppression effects inherent in these techniques, we utilized online nanocapillary high performance liquid chromatography (nHPLC) with ESI/MS to characterize the sites and extent of sialylation on gp120. Eight of the known 26 consensus glycosylation sites of HIV-ISF2 gp120 were determined to be sialylated. Two of these sites were previously uncharacterized complex glycans. Thirteen high mannose sites were also determined. The heterogeneity of four of these sites had not been previously characterized. In addition, a peptide containing two consensus glycosylation sites, which had previously been determined to contain complex glycans, was also determined to be high mannose as well.  相似文献   

10.
The terminal monosaccharide of glycoconjugates on a eukaryotic cell surface is typically a sialic acid (Neu5Ac). Increased sialylation usually indicates progression and poor prognosis of most carcinomas. Here, we utilize two human mammary epithelial cell lines, HB4A (breast normal cells) and T47D (breast cancer cells), as a model system to demonstrate differential surface glycans when treated with sialic acid under nutrient deprivation. Under a starved condition, sialic acid treatment of both cells resulted in increased activities of α2→3/6 sialyltransferases as demonstrated by solid phase assay using lectin binding. However, a very strong Maackia amurensis agglutinin I (MAL-I) staining on the membrane of sialic acid-treated T47D cells was observed, indicating an increase of Neu5Acα2→3Gal on the cell surface. To our knowledge, this is a first report showing the utility of lectins, particularly MAL-I, as a means to discriminate between normal and cancer cells after sialic acid treatment under nutrient deprivation. This method is sensitive and allows selective detection of glycan sialylation on a cancer cell surface.  相似文献   

11.
Due to its excellent programmability and biocompatibility, DNA molecule has unique advantages in cell surface engineering. Recent progresses provide a reliable and feasible way to engineer cell surfaces with diverse DNA molecules and DNA nanostructures. The abundant form of DNA nanostructures has greatly expanded the toolbox of DNA-based cell surface engineering and gave rise to a variety of novel and fascinating applications. In this review, we summarize recent advances in DNA-based cell surface engineering and its biological applications. We first introduce some widely used methods of immobilizing DNA molecules on cell surfaces and their application features. Then we discuss the approaches of employing DNA nanostructures and dynamic DNA nanotechnology as elements for creating functional cell surfaces. Finally, we review the extensive biological applications of DNA-based cell surface engineering and discuss the challenges and prospects of DNA-based cell surface engineering.  相似文献   

12.
The metabolic oligosaccharide engineering (MOE) strategy using unnatural sialic acids has recently enabled the visualization of the sialome in living systems. However, MOE only reports on global sialylation and dissected information regarding subsets of sialosides is missing. Described here is the synthesis and utilization of sialic acids modified with a sydnone reporter for the metabolic labeling of sialoconjugates. The positioning of the reporter on the sugar significantly altered its metabolic fate. Further in vitro enzymatic assays revealed that the 9‐modified neuraminic acid is preferentially accepted by the sialyltransferase ST6Gal‐I over ST3Gal‐IV, leading to the favored incorporation of the reporter into linkage‐specific α2,6‐N‐linked sialoproteins. This sydnone sugar presents the possibility of investigating the roles of specific sialosides.  相似文献   

13.
张启伟  郑琦 《色谱》2019,37(12):1261-1267
唾液酸是一类拥有9碳核心结构的单糖,广泛存在于脊椎动物体内,以及部分无脊椎动物、真菌和细菌中。唾液酸在生物体内可以以游离形式存在,也经常作为重要的组成部分连接于糖缀合物的末端,这使得其能够参与到多项生理活动中,且与炎症、癌症等疾病密切相关。以色谱法、质谱法为核心的分析方法,是表征生物样品中唾液酸的最主要研究方法。为了提高检测灵敏度或色谱分离度,在分析之前通常需要对唾液酸进行衍生化处理。经过几十年的发展,研究者们逐步建立了多种衍生化方法。该文从单糖、自由唾液酸、N/O-聚糖、糖脂的角度综述了用于色谱与质谱分析唾液酸的衍生方法,并展望了该领域的应用及发展趋势。  相似文献   

14.
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.  相似文献   

15.
16.
Background: Technologies that improve control of protein orientation on surfaces or in solution, through designed molecular recognition, will expand the range of proteins that are useful for biosensors, molecular devices and biomaterials. A limitation of some proteins is their biologically imposed symmetry, which results in indistinguishable recognition surfaces. Here, we have explored methods for modifying the symmetry of an oligomeric protein that exhibits useful self-assembly properties.Results:Escherichia coli glutamine synthetase (GS) contains 24 solvent-exposed histidines on two symmetry-related surfaces. These histidines drive a metal-dependent self-assembly of GS tubes. Immobilization of GS on the affinity resin Ni2+-NTA followed by on-column modification with diethyl pyrocarbonate affords asymmetrically modified GS that self-assembles only to the extent of ‘short’ dimeric GS tubes, as demonstrated by electron microscopy, dynamic light scattering and atomic force microscopy. The utility of Ni2+-NTA as a chemical mask was also demonstrated for asymmetric modification of engineered cysteines adjacent to the natural histidines.Conclusions: Current genetic methods do not provide distinguishable recognition elements on symmetry-related surfaces of biologically assembled proteins. Ni2+-NTA serves as a mask to control chemical modification in vitro of residues within symmetry-related pairs, on proteins containing functional Histags. This strategy may be extended to modification of a wide range of amino acids with a myriad of reagents.  相似文献   

17.
A cross-linking method is developed to elucidate glycan-mediated interactions between membrane proteins through sialic acids. The method provides information on previously unknown extensive glycomic interactions on cell membranes. The vast majority of membrane proteins are glycosylated with complicated glycan structures attached to the polypeptide backbone. Glycan–protein interactions are fundamental elements in many cellular events. Although significant advances have been made to identify protein–protein interactions in living cells, only modest advances have been made on glycan–protein interactions. Mechanistic elucidation of glycan–protein interactions has thus far remained elusive. Therefore, we developed a cross-linking mass spectrometry (XL-MS) workflow to directly identify glycan–protein interactions on the cell membrane using liquid chromatography-mass spectrometry (LC-MS). This method involved incorporating azido groups on cell surface glycans through biosynthetic pathways, followed by treatment of cell cultures with a synthesized reagent, N-hydroxysuccinimide (NHS)–cyclooctyne, which allowed the cross-linking of the sialic acid azides on glycans with primary amines on polypeptide backbones. The coupled peptide–glycan–peptide pairs after cross-linking were identified using the latest techniques in glycoproteomic and glycomic analyses and bioinformatics software. With this approach, information on the site of glycosylation, the glycoform, the source protein, and the target protein of the cross-linked pair were obtained. Glycoprotein–protein interactions involving unique glycoforms on the PNT2 cell surface were identified using the optimized and validated method. We built the GPX network of the PNT2 cell line and further investigated the biological roles of different glycan structures within protein complexes. Furthermore, we were able to build glycoprotein–protein complex models for previously unexplored interactions. The method will advance our future understanding of the roles of glycans in protein complexes on the cell surface.

The cell surface glycocalyx is highly interactive defined by extensive covalent and non-covalent interactions. A method for cross-linking and characterizing glycan–peptide interactions in situ is developed.  相似文献   

18.
The total synthesis of ganglioside GP3, which is found in the starfish Asterina pectinifera, has been accomplished through stereoselective and effective glycosylation reactions. The sialic acid embedded octasaccharide moiety of the target compound was constructed by [4+4] convergent coupling. A tetrasaccharyl donor and acceptor that contained internal sialic acid residues were synthesized with an orthogonally protected N‐Troc sialic acid donor as the key common synthetic unit, and they underwent highly stereoselective glycosidation. The resulting sialosides were subsequently transformed into reactive glycosyl acceptors. [4+4] coupling furnished the octasaccharide framework in 91 % yield as a single stereoisomer. Final conjugation of the octasaccharyl donor and glucosyl ceramide acceptor produced the protected target compound in high yield, which underwent global deprotection to successfully deliver ganglioside GP3.  相似文献   

19.
Dynamic turnover of cell‐surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two‐step labeling sequence is required, which suffers from the tissue‐penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single‐step fluorescent glycan labeling strategy by using fluorophore‐tagged analogues of the nucleotide sugars. Injecting fluorophore‐tagged sialic acid and fucose into the yolk of zebrafish embryos at the one‐cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.  相似文献   

20.
Glycoproteins on epithelial tumor cells often exhibit aberrant glycosylation profiles. The incomplete formation of the glycan side chains resulting from a down-regulated glucosamine transfer and a premature sialylation results in additional peptide epitopes, which become accessible to the immune system in mucin-type glycoproteins. These cancer-specific structure alterations are considered to be a promising basis for selective immunological attack on tumor cells. Among the tumor-associated saccharide antigens, the (2,3)-sialyl-T antigen has been identified as the most abundant glycan, found in several different carcinoma cell lines. According to a linear biomimetic strategy, the (2,3)-sialyl-T antigen was synthesized by a stepwise glycan chain extension of a protected galactosamine-threonine precursor. For the construction of immunostimulating antigens combining both peptide and saccharide motifs, this antigen was incorporated into glycopeptide partial structures from the mucins MUC1 and MUC4 by sequential solid-phase synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号