首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical study on structures and stability of C4P isomers   总被引:1,自引:0,他引:1  
The structures, energetics, spectroscopies, and stabilities of doublet C(4)P isomeric species are explored at the DFT/B3LYP, QCISD, and CCSD(T) (singlet-point) levels. A total of 12 minimum isomers and 27 interconversion transition states are located. At the CCSD(T)/6-311G(2df)//QCISD/6-311G(d)+ZPVE level, the lowest-lying isomer is a floppy CCCCP 1 (0.0 kcal/mol) mainly featuring a cumulenic structure |C=C=C=C=P*|, which differs much from the analogous C4N radical (|*C-C[triple bond]C-C[triple bond]N|). The quasi-linearity and the low bending mode of 1 are in contrast to the previous prediction. The second energetically followed isomer PC-cCCC 3 (14.9 kcal/mol) possesses a CCC ring-bonded to CP. The two low-lying isomers are separated by a high-energy ring-closure/open transition state (26.5 kcal/mol) and thus are very promising candidates for future laboratory and astrophysical detection. Furthermore, four high-energy isomers, that is, two bent isomers CCPCC 2 (68.4 kcal/mol) and CCPCC 2' (68.5 kcal/mol) and two cagelike species 10 (56.0 kcal/mol) and 11 (67.9 kcal/mol), are also stabilized by considerable barriers. The present work is the first detailed potential energy survey of CnP clusters and can provide useful information for the investigation of larger CnP radicals and for understanding the isomerism of P-doped C vaporization processes.  相似文献   

2.
在密度泛函和从头算理论水平下计算了单重态的NC2S+离子的结构、能量、光谱以及稳定性. 在B3LYP/6-311G(d)水平下, 得到8个异构体, 它们由15个过渡态相连接. 在CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE水平下, 得到能量最低的异构体是直线型的具有1Σ电子态的NCCS+(1)(0.0 kJ/mol), 其次是直线型的异构体CNCS+(2)(54.8 kJ/mol). 两个低能量的异构体1和2及另外一个高能量的直线型异构体CCNS+(3)(323.8 kJ/mol)都具有相当大的动力学稳定性, 这三个异构体在具备一定条件的实验室和星际条件下是可以进行观测的. 分析了这3个异构体的成键性质.  相似文献   

3.
The structures, energetics, spectral parameters and stability of the singlet SiCP2 isomers are explored at the density functional theory and ab initio levels. Eight isomers connected by ten interconversion transition states are located at the CCSD(T)/6-311G(2d)//B3LYP/6-311G(d)level. The kinetically stable isomers and their relevant interconversion transition states are further refined at CCSD(T)/6-311+G(2df)//QCISD/6-311G(d) level. At QCISD/6-311G(d) level, one four-membered ring isomer cSiPCP and two linear structures PSiCP, SiCPP possess considerable kinetic stability (more than 15 kcal/mol). The valence bond structures of three kinetically stable SiCP2 isomers are analyzed. The similarities and discrepancies in structure, energy and stability between SiCP2 and its analogous C2P2, Si2P2, SiCN2 and CSiNP molecules are also discussed. The predicted structures and spectroscopic properties are expected to be informative for the identification of the SiCP2 in the laboratory and space.  相似文献   

4.
The structures, energetics, spectroscopies, and stabilities of the doublet [Si, C, N, O] radical are explored at the density functional theory and ab initio levels. Sixteen isomers are located, connected by 29 interconversion transition states. At the CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE level, the lowest lying isomer is a linear SiNCO 1 (0.0 kcal/mol) mainly featuring a cumulene | . Si = N = C = O. The second and third low-lying isomers are bent OSiCN 2 (8.8) and bent OSiNC 3 (11.1), respectively. All the three low-lying isomers 1, 2, 3, and another high-lying species 5 (75.4) with a linear SiCNO structure are shown to have considerable kinetic stability and may be experimentally observable. The predicted results of isomers 1 and 2 are consistent with the previous mass spectrometry experiments. Moreover, the fourth low-lying species SiOCN 4 (23.9) with bent structure is expected to be observable in low-temperature environments. The bonding nature of the five isomers 1, 2, 3, 4, and 5 is analyzed. The calculated results are compared with those of the analogous molecules C(2)NO and Si(2)NO. Implications in interstellar space and N,O-doped SiC vaporization processes are also discussed.  相似文献   

5.
DFT/B3LYP/6-311G(d) and CCSD(T)/6-311G(2d) single-point calculations are carried out for exploring the doublet potential energy surface (PES) of PC3O, a molecule of potential interest in interstellar chemistry. A total of 29 minima connected by 65 interconversion transition states are located. The structures of the most relevant isomers and transition states are further optimized at the QCISD level followed by CCSD(T) single-point energy calculations. At the CCSD(T)/6-311G(2df)//QCISD/6-311G(d)+ZPVE level, the global minimum is the quasi-linear structure PCCCO 1 (0.0 kcal/mol) with a great kinetic stability of 47.9 kcal/mol, and the cumulenic form features largely in its resonance structures. Moreover, the chainlike isomer OPCCC 3 (64.5) and five-membered-ring species cPCCCO 19 (77.8) possess considerable kinetic stability of about 18.0 kcal/mol. All these three isomers are very promising candidates for future experimental and astrophysical detection. Additionally, a three-membered-ring isomer CC-cCOP 10 (69.6) has slightly lower kinetic stability of around 15 kcal/mol and may also be experimentally observable. Possible formation mechanisms of the four stable isomers in interstellar space are discussed. The present research is the first attempt to study the isomerization and dissociation mechanisms of PC n O series. The predicted spectroscopic properties, including harmonic vibrational frequencies, dipole moments and rotational constants for the relevant isomers, are expected to be informative for the identification of PC3O in laboratory and interstellar medium.  相似文献   

6.
 The structures and isomerization pathways of various HC2P isomers in both singlet and triplet states are investigated at the B3LYP/6-311G(d,p), QCISD/6-311G(d,p) (for isomers only) and single-point CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) levels. At the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level, the lowest-lying isomer is a linear HCCP structure 3 1 in the 3 state. The second low-lying isomer has a CPC ring with exocyclic CH bonding 1 5 in a singlet state at 10.5 kcal/mol. The following third and fourth low-lying isomers are a singlet bent HCCP structure 1 1 at 20.9 kcal/mol and a bent singlet HPCC structure 1 3 at 35.8 kcal/mol, respectively. Investigation of the HC2P potential-energy surface indicates that in addition to the experimentally known isomer 3 1, the other isomers 1 1, 1 3 and 1 5 also have considerable kinetic stability and may thus be observable. However, the singlet and triplet bent isomers HCPC 1 2 and 3 2 as well as the triplet bent isomer HPCC 3 3 are not only high-lying but are also kinetically unstable, in sharp contrast to the situation of the analogous HCNC and HNCC species that are both kinetically stable and that have been observed experimentally. Furthermore, the reactivity of various HC2P isomers towards oxygen atoms is briefly discussed. The results presented here may be useful for future identification of the completely unknown yet kinetically stable HC2P isomers 1 1, 1 3 and 1 5 either in the laboratory or in interstellar space. Received: 5 November 2000 / Accepted: 25 November 2001 / Published online: 8 April 2002  相似文献   

7.
The structures, energetics, spectroscopies, and isomerization of various doublet Si2CP species are explored theoretically. In contrast to the previously studied SiC2N and SiC2P radicals that have linear SiCCN and SiCCP ground states, the title Si2CP radical has a four-membered-ring form cSiSiPC 1 (0.0 kcal/mol) with Si-C cross-bonding as the ground-state isomer at the CCSD(T)/6-311G(2df)//B3LYP/6-311G(d)+ZPVE level, similar to the Si2CN radical. The second low-lying isomer 2 at 11.6 kcal/mol has a SiCSiP four-membered ring with C-P cross-bonding, yet it is kinetically quite unstable toward conversion to 1 with a barrier of 3.5 kcal/mol. In addition, three cyclic species with divalent carbene character, i.e., cSiSiCP 7, 7' with C-P cross-bonding and cSiCSiP 8 with Si-Si cross-bonding, are found to possess considerable kinetic stability, although they are energetically high lying at 44.4, 46.5, and 41.4 kcal/mol, respectively. Moreover, a linear isomer SiCSiP 5 at 44.3 kcal/mol also has considerable kinetic stability and predominantly features the interesting cumulenic /Si=C=Si=P/* form with a slight contribution from the silicon-phosphorus triply bonded form /Si=C*-Si[triple bond]P/. The silicon-carbon triply bonded form *Si[triple bond]C-Si[triple bond]P/ has negligible contribution. All five isomers are expected to be observable in low-temperature environments. Their bonding nature and possible formation strategies are discussed. For relevant species, the QCISD/6-311G(d) and CCSD(T)/6-311+G(2df) (single-point) calculations are performed to provide more reliable results. The calculated results are compared to those of the analogous C3N, C3P, SiC2N, and Si2CN radicals with 17 valence electrons. Implications in interstellar space and P-doped SiC vaporization processes are also discussed.  相似文献   

8.
To predict potentially stable molecules with Si(triple bond)C triple bonding, theoretical calculations at the B3LYP/ 6-311G(d) and CCSD(T)/6-311G(2df) (single-point) levels were employed to study the structures, energetics, and isomerization of various SiCN2 isomers. A schematic potential energy surface (PES) of SiCN2 was established to discuss the kinetic stability of the isomers. A new isomer SiCNN was found to possess a typical Si(triple bond)C triple bond, as confirmed by comparative calculations at the B3LYP, QCISD, QCISD(T), CCSD, and CCSD(T) levels on the bond lengths of SiCNN and other experimentally or theoretically known species of RSiCH (R = H, F, Cl, OH). Moreover, SiCNN resides in a very deep potential, the stabilization barrier is at least 53.2 kcal mol(-1). Thus, SiCNN may be considered as the most kinetically stable isomer with Si(triple bond)C triple bonding known to date, and it may represent a very promising molecule for future experimental characterization. In addition, the stability of the other isomers, such as the four linear species SiNCN, SiNNC, NSiCN and NSiNC, a three-membered NNC ring isomer with exocyclic C-Si bonding, and a four-membered SiCNN ring isomer is discussed and compared with SiCNN.  相似文献   

9.
At various levels of theory, singlet and triplet potential energy surfaces (PESs) of Si2CO, which has been studied using matrix isolation infrared spectroscopy, are investigated in detail. A total of 30 isomers and 38 interconversion transition states are obtained at the B3LYP/6‐311G(d) level. At the higher CCSD(T)/6‐311+G(2d)//QCISD/6‐311G(2d)+ZPVE level, the global minimum 11 (0.0 kcal/mol) corresponds to a three‐membered ring singlet O‐cCSiSi (1A′). On the singlet PES, the species 12 (0.2 kcal/mol) is a bent SiCSiO structure with a 1A′ electronic state, followed by a three‐membered ring isomer Si‐cCSiO (1A′) 13 (23.1 kcal/mol) and a linear SiCOSi 14 (1Σ+) (38.6 kcal/mol). The isomers 11, 12, 13 , and 14 possess not only high thermodynamic stabilities, but also high kinetic stabilities. On the triplet PES, two isomers 31 (3B2) (18.8 kcal/mol) and 37 (3A″) (23.3 kcal/mol) also have high thermodynamic and kinetic stabilities. The bonding natures of the relevant species are analyzed. The similarities and differences between C3O, C3S, SiC2O, and SiC2S are discussed. The present results are also expected to be useful for understanding the initial growing step of the CO‐doped Si vaporization processes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

10.
Various levels of calculations are carried out~for exploring the potential energy surface (PES) of triplet SiC3O, a molecule of potential interest in interstellar chemistry. A total of 38 isomers are located on the PES including chain-like, cyclic and cage-like structures, which are connected by 87 interconversion transition states at the DFT/B3LYP/6-311G(d) level. The structures of the most relevant isomers and transition states are further optimized at the QCISD/6-311G(d) level followed by CCSD(T)/6-311+G(2df) single-point energy calculations. At the QCISD level, the lowest lying isomer is a linear SiCCCO 1 (0.0 kcal/mol) with the 3 ∑ electronic state, which possesses great kinetic stability of 59.5 kcal/mol and predominant resonant structure . In addition, the bent isomers CSiCCO 2 (68.3 kcal/mol) and OSiCCC 5 (60.1 kcal/mol) with considerable kinetic stability are also predicted to be candidates for future experimental and astrophysical detection. The bond natures and possible formation pathways in interstellar space of the three stable isomers are discussed. The predicted structures and spectroscopic properties for the relevant isomers are expected to be informative for the identification of SiC3O and even larger SiC n O species in laboratory and interstellar medium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The kinetic properties of the carbon-fluorine radicals are little understood except those of CFn (n =1-3). In this article, a detailed mechanistic study was reported on the gas-phase reaction between the simplest pi-bonded C2F radical and water as the first attempt to understand the chemical reactivity of the C2F radical. Various reaction channels are considered. The most kinetically competitive channel is the quasi-direct hydrogen-abstraction route forming P5 HCCF + OH. At the CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels, the overall H-abstraction barriers (4.5, 4.7, and 4.2 kcal/mol) for the C2F + H2O reaction are comparable to the corresponding values (5.5, 3.7, and 5.7 kcal/mol) for the analogous C2H + H2O reaction. This suggests that C2F is a reactive radical like the extensively studied C2H, in contrast to the situation of the CF and CF2 radicals that have much lower reactivity than the corresponding hydrocarbon species. Thus, the C2F radical is expected to play an important role in the combustion processes of the carbon-fluorine chemistry. Furthermore, addition of a second H2O can catalyze the reaction with the H-abstraction barrier significantly reduced to a marginally zero value (0.5 kcal/mol). This is also indicative of the potential relevance of the title reactions in the low-temperature atmospheric chemistry.  相似文献   

12.
The structures and isomerization of Si(2)CN species are explored at density functional theory and ab initio levels. Fourteen minimum isomers are located connected by 23 interconversion transition states. At the coupled-cluster single double (CCSD)(T)/6-311+G(2df)//QCISD/6-311G(d) +zero-point vibrational energies level, the thermodynamically most stable isomer is a four-membered ring form cSiSiCN 1 with Si-C cross bonding. Isomer 1 has very strong C-N multiple bonding characters, formally suggestive of a radical adduct between Si(2) and CN. Such a highly pi-electron localization can effectively stabilize isomer 1 to be the ground state. The second low-lying isomer is a linear form SiCNSi 5 (9.8 kcal/mol above 1) with resonating structure among [Si=C-*N=Si], *[Si=C=N=Si], and [Si=C=N-Si*]* with the former two bearing more weight. The species 1 and 5 have very high kinetic stability stabilized by the barriers of at least 25 kcal/mol. Both isomers should be experimentally or astrophysically observable. In light of the fact that no cyclic nitrogen-containing species have been detected in space, the cyclic species 1 could be a very promising candidate. The calculated results are compared to those of the analogous molecules C(3)N, C(3)P, SiC(2)N, and SiC(2)P. Implications of Si(2)CN in interstellar and N-doped SiC vaporization processes are also discussed.  相似文献   

13.
Theoretical investigations are performed for the first time on the simplest hydrogenated germanium cyanide [H,Ge,C,N], whose analogs [H,C(2),N] and [H,Si,C,N] have been detected in space and laboratory, respectively. The detailed potential energy surfaces in both singlet and triplet states are constructed at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-31G(d)+ZPVE level, including 18 minimum isomers and 26 interconversion transition states. The former three low-lying and kinetically stabilized isomers are HGeCN (1)1 (0.0 kcal/mol), HGeNC (1)2 (5.1 kcal/mol), and cyclic cCHNGe(1)7 (11.1 kcal/mol). In addition, five isomers HCNGe (1)3 (33.8), HNCGe (1)5 (29.8), cNHCGe (1)8 (37.9), HGeCN (3)1 (30.1), and HNCGe (3)5 (26.5) each have considerable barriers, despite their high energies. Future laboratory characterization and astrophysical detection of the eight [H,Ge,C,N] isomers, especially the former three low-lying species (1)1, (1)2, and (1)7, are highly recommended. The accurate spectroscopic data at the QCISD/6-311G(d,p) level are provided. For some species, the CBS-QB3 calculations are also performed. Wherever possible, comparisons with the analogous [H,C(2),N] and [H,Si,C,N] are made on the structural, energetic, and bonding properties.  相似文献   

14.
在CCSD(T)/6-311G(d,f)//MP2/6-311G(d,f) ZPE水平下,计算得到含有8个异构体和11个过渡态的HSCCS自由基体系势能面,讨论了异构体的结构与稳定性及异构体之间的异构化过程.结果表明异构体m1的能量最低,除m1以外,异构体m2和m3的能量也比较低,在MP2水平上,过渡态TS1的能量比异构体m2仅高3.9kJ/mol,而在CCSD(T)水平上,TS1的能量比m2低14.6 kJ/mol,这说明异构体m2可以迅速转化为能量更低的m1.异构体m3的能量比异构体m1高49.99 kJ/mol,可以推断,在合适的实验条件下可以观测到异构体m1.  相似文献   

15.
The structures, energies, stabilities and spectroscopies of doublet C4H2+ cations were explored at the DFT/B3LYP/6-311G(d,p), CCSD(T)/6-311+G(2df,2pd)(single-point), and G3B3 levels. Ten minimum isomers including the chainlike, three-member-ring, and four-member-ring structures are interconverted by means of 15 interconversion transition states. The potential energy surface was investigated. At the CCSD(T)/6-311+G(2df,2pd) and G3B3 levels, the global minimum isomer was found to be a linear HCCCCH. The structures of the stable isomer and its relevant transition state are further optimized at the QCISD/6-311G(d,p) level. The bonding nature and structure of isomer HCCCCH were analyzed.  相似文献   

16.
Density functional theory has been applied at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level to examine the energetics of alpha,beta- versus beta,gamma-unsaturation for some common organic functional groups. Specifically, the relative stabilities of allyl-X (H2C=CHCH2X) and 1-propenyl-X (H3CCH=CHX) isomers have been computed for X = methyl, vinyl, phenyl, formyl, acetyl, methoxy, methylthio, methylsulfinyl, methylsulfonyl, sulfamoyl, and methoxysulfonyl, and the results are compared to available experimental data. The intrinsic preference of 3 kcal/mol for the 1-propenyl isomer when X = CH3 is exceeded by 2-4 kcal/mol for first-row conjugating groups, but it is not met for the sulfur-containing groups. In particular, alpha,beta-unsaturation is favored by less than 1 kcal/mol for the sulfone and sulfonamide analogues, while it is preferred by 8 kcal/mol for the vinyl-substituted case. Detailed structural results and torsional energy profiles are also reported.  相似文献   

17.
The singlet and triplet potential energy surfaces (PES) for the isomerization and dissociation reactions of B4 isomers have been investigated using ab initio methods. Ten B4 isomers have been identified and of these 10 species, 4 have not been reported previously. The singlet rhombic structure 11 is found to be the most stable on the B4 surface, in agreement with the results of previous reports. Several isomerization and dissociation pathways have been found. On the singlet PES, the linear 13b can rearrange to rhombus 11 directly, while 13c rearranges to 11 through two‐step reactions involving a cyclic intermediate. On the triplet PES, the capped triangle structure 32 undergoes ring opening to the linear isomer 33b with a barrier of 34.8 kcal/mol and 44.9 kcal/mol, and the latter undergoes ring closure to the square structure 31 with a barrier of 30.4 kcal/mol and 33.0 kcal/mol at the MP4/6–311+G(3df)//MP2/6–311G(d) and CCSD/aug‐cc‐pVTZ//MP2/6–311G(d) levels of theory, respectively. The direct decomposition of singlet B4 yielding to B3+B is shown to have a large endothermicity of 87.3 kcal/mol (CCSD), and that producing 2B2 to have activation energy of 133.4 kcal/mol (CCSD).  相似文献   

18.
 The B3LYP/6-311G(d) and CCSD(T)/6-311G(2df) (single-point) methods have been used to investigate the singlet potential energy surface of C2NP, in which seven stationary isomers and seventeen interconversion transition states are involved. At the final CCSD(T)/6-311G(2df)//B3LYP6-311G(d) level with zero-point vibrational energy correction the lowest-lying isomer is a linear NCCP followed by two linear CNCP isomers at 23.9  and CCNP at 65.8 kcal mol−1, respectively. The three isomers are kinetically very stable towards both isomerization and dissociation, and CCNP is even more kinetically stable than CNCP – by 14.3 kcal mol−1 despite its high energy. Further comparative calculations were performed at the QCISD and QCISD(T) levels with the 6-311G(d) and 6-311G(2d) basis sets to obtain more reliable structures and spectroscopy for the three isomers. The calculated bond lengths, rotational constant, and dipole moment for NCCP were in close agreement with the experimentally determined values. Finally, similarities and discrepancies between the potential energy surface of C2NP and those of the analogous species C2N2 and C2P2 were compared. The results presented in this paper might be helpful for future identification of the two still unknown yet kinetically very stable isomers CNCP and CCNP, both in the laboratory and in interstellar space. Received: 3 January 2001 / Accepted: 6 June 2001 / Published online: 30 October 2001  相似文献   

19.
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.  相似文献   

20.
Three skeletal rearrangement channels for the norbornadiene (N*+) to the 1,3,5-cycloheptatriene (CHT*+) radical cation conversion, initialized by opening a bridgehead-methylene bond in N*+, are investigated using the quantum chemical B3LYP, MP2 and CCSD(T) methods in conjunction with the 6-311 +G(d,p) basis set. Two of the isomerizations proceed through the norcaradiene radical cation (NCD*+), either through a concerted path (N*+ - NCD*+), or by a stepwise mechanism via a stable intermediate (N*+ - I1 - NCD*+). At the CCSD(T)/6-311 +G(d,p)//B3LYP/6-311 +G(d,p) level, the lowest activation energy, 28.9 kcal mol(-1), is found for the concerted path whereas the stepwise path is found to be 2.3 kcal mol(-1) higher. On both pathways, NCD*+ rearranges further to CHT*+ with significantly less activation energy. The third channel proceeds from N*+ through I1 and then directly to CHT*+, with an activation energy of 37.1 kcal mol(-1). The multi-step channel reported earlier by our group, which proceeds from N*+ to CHT*+ via the quadricyclane and the bicyclo[2.2.1]hepta-2-ene-5-yl-7-ylium radical cations, is 4.6 kcal mol(-1) lower than the most favorable path of the present study. If the methylene group is substituted with C(CH3)2, however, the concerted path is estimated to be 5.6 kcal mol(-1) lower than the corresponding substituted multi-step path at the B3LYP/6-311+(d,p) level. This shows that substitution of particular positions can have dramatic effects on altering reaction barriers in the studied rearrangements. We also note that identical energies are computed for CHT*+ and NCD*+ whereas, in earlier theoretical investigations, the former was reported to be 6-17 kcal mol(-1) more stable than the latter. Finally, a bent geometry is obtained for CHT*+ with MP2/6-311 +G(d,p) in contradiction with the planar conformation reported for this cation in earlier computational studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号